Skip to main content
Log in

Electrophysiological measures of dysfunction in early-stage diabetic retinopathy: No correlation between cone phototransduction and oscillatory potential abnormalities

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To define the relationship between abnormalities in the activation phase of cone phototransduction and the oscillatory potentials (OPs) of the light-adapted electroretinogram in diabetics who have mild or no retinopathy.

Methods

Subjects included 20 non-diabetic controls and 40 type-2 diabetics (20 had no clinically apparent diabetic retinopathy [NDR] and 20 had mild nonproliferative DR). Single flash responses for a series of stimulus retinal illuminances were measured under light-adapted conditions using conventional techniques. The a-waves of the responses were fit with a delayed Gaussian model to derive Rmp3 (maximum amplitude of the massed photoreceptor response) and S (phototransduction sensitivity). OPs were extracted from the responses by conventional band-pass filtering.

Results

Analysis of variance (ANVOA) indicated that both diabetic groups had significant OP amplitude and S reductions compared to the controls, whereas Rmp3 did not differ significantly among the groups. Although log OP amplitude and log Rmp3 were significantly correlated for the control subjects for each flash retinal illuminance (all r > 0.49, p < 0.03), log OP amplitude and log Rmp3 were not correlated for either diabetic group for any flash retinal illuminance (all r ≤ 0.36, p ≥ 0.13). Log OP amplitude and log S were generally not correlated significantly for the control or diabetic groups.

Conclusion

OP amplitude losses do not appear to be related to reduced cone sensitivity in early-stage diabetic retinopathy. This suggests that diabetes may separately affect cone function, as evidenced by cone phototransduction sensitivity losses, and inner-retina function, as evidenced by OP amplitude losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams AJ, Bearse MA Jr (2012) Retinal neuropathy precedes vasculopathy in diabetes: a function-based opportunity for early treatment intervention? Clin Exp Optom 95(3):256–265. https://doi.org/10.1111/j.1444-0938.2012.00733.x

    Article  PubMed  Google Scholar 

  2. Lynch SK, Abramoff MD (2017) Diabetic retinopathy is a neurodegenerative disorder. Vis Res 139:101–107. https://doi.org/10.1016/j.visres.2017.03.003

    Article  PubMed  Google Scholar 

  3. Holopigian K, Seiple W, Lorenzo M, Carr R (1992) A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci 33(10):2773–2780

    CAS  PubMed  Google Scholar 

  4. King-Smith PE, Loffing DH, Jones R (1986) Rod and cone ERGs and their oscillatory potentials. Invest Ophthalmol Vis Sci 27(2):270–273

    CAS  PubMed  Google Scholar 

  5. Peachey NS, Alexander KR, Fishman GA (1987) Rod and cone system contributions to oscillatory potentials: an explanation for the conditioning flash effect. Vis Res 27(6):859–866

    Article  CAS  PubMed  Google Scholar 

  6. Lachapelle P, Rousseau S, McKerral M, Benoit J, Polomeno RC, Koenekoop RK, Little JM (1998) Evidence supportive of a functional discrimination between photopic oscillatory potentials as revealed with cone and rod mediated retinopathies. Doc Ophthalmol 95(1):35–54

    Article  CAS  PubMed  Google Scholar 

  7. Rousseau S, Lachapelle P (1999) The electroretinogram recorded at the onset of dark-adaptation: understanding the origin of the scotopic oscillatory potentials. Doc Ophthalmol 99(2):135–150

    Article  CAS  PubMed  Google Scholar 

  8. Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17(4):485–521

    Article  CAS  PubMed  Google Scholar 

  9. Wachtmeister L, Dowling JE (1978) The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 17(12):1176–1188

    CAS  PubMed  Google Scholar 

  10. Tzekov R, Arden GB (1999) The electroretinogram in diabetic retinopathy. Surv Ophthalmol 44(1):53–60

    Article  CAS  PubMed  Google Scholar 

  11. Bearse MA Jr, Adams AJ, Han Y, Schneck ME, Ng J, Bronson-Castain K, Barez S (2006) A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res 25(5):425–448. https://doi.org/10.1016/j.preteyeres.2006.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  12. Holopigian K, Greenstein VC, Seiple W, Hood DC, Carr RE (1997) Evidence for photoreceptor changes in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 38(11):2355–2365

    CAS  PubMed  Google Scholar 

  13. McAnany JJ, Chen YF, Liu K, Park JC (2019) Nonlinearities in the flicker electroretinogram: A tool for studying retinal dysfunction applied to early-stage diabetic retinopathy. Vision Res 161:1–11. https://doi.org/10.1016/j.visres.2019.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  14. McAnany JJ, Park JC (2018) Temporal frequency abnormalities in early-stage diabetic retinopathy assessed by electroretinography. Invest Ophthalmol Vis Sci 59(12):4871–4879. https://doi.org/10.1167/iovs.18-25199

    Article  PubMed  PubMed Central  Google Scholar 

  15. McAnany JJ, Park JC (2019) Cone photoreceptor dysfunction in early-stage diabetic retinopathy: association between the activation phase of cone phototransduction and the flicker electroretinogram. Invest Ophthalmol Vis Sci 60(1):64–72. https://doi.org/10.1167/iovs.18-25946

    Article  PubMed  PubMed Central  Google Scholar 

  16. McAnany JJ, Park JC, Chau FY, Leiderman YI, Lim JI, Blair NP (2018) Amplitude loss of the high-frequency flicker electroretinogram in early diabetic retinopathy. Retina. https://doi.org/10.1097/IAE.0000000000002262

    Article  Google Scholar 

  17. Park JC, Chau FY, Lim JI, McAnany JJ (2019) Electrophysiological and pupillometric measures of inner retina function in nonproliferative diabetic retinopathy. Doc Ophthalmol. https://doi.org/10.1007/s10633-019-09699-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hood DC, Birch DG (1994) Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Invest Ophthalmol Vis Sci 35(7):2948–2961

    CAS  PubMed  Google Scholar 

  19. Hood DC, Birch DG (1995) Phototransduction in human cones measured using the alpha-wave of the ERG. Vision Res 35(20):2801–2810

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida A, Kojima M, Ogasawara H, Ishiko S (1991) Oscillatory potentials and permeability of the blood-retinal barrier in noninsulin-dependent diabetic patients without retinopathy. Ophthalmology 98(8):1266–1271

    Article  CAS  PubMed  Google Scholar 

  21. Zaharia M, Olivier P, Lafond G, Blondeau P, Brunette JR (1987) Lobular delayed choroidal perfusion as an early angiographic sign of diabetic retinopathy: a preliminary report. Can J Ophthalmol 22(5):257–261

    CAS  PubMed  Google Scholar 

  22. Bresnick GH, Palta M (1987) Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. Arch Ophthalmol 105 (7):929–933

    Article  CAS  PubMed  Google Scholar 

  23. Brunette JR, Lafond G (1983) Electroretinographic evaluation of diabetic retinopathy: sensitivity of amplitude and time of response. Can J Ophthalmol 18(6):285–289

    CAS  PubMed  Google Scholar 

  24. Wanger P, Persson HE (1985) Early diagnosis of retinal changes in diabetes: a comparison between electroretinography and retinal biomicroscopy. Acta Ophthalmol (Copenh) 63(6):716–720

    Article  CAS  Google Scholar 

  25. Gjotterberg M (1974) The electroretinogram in diabetic retinopathy. A clinical study and a critical survey. Acta Ophthalmol (Copenh) 52 (4):521–533

    Article  Google Scholar 

  26. Davis MD, Fisher MR, Gangnon RE, Barton F, Aiello LM, Chew EY, Ferris FL 3rd, Knatterud GL (1998) Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss: Early Treatment Diabetic Retinopathy Study Report #18. Invest Ophthalmol Vis Sci 39(2):233–252

    CAS  PubMed  Google Scholar 

  27. Alexander KR, Rajagopalan AS, Raghuram A, Fishman GA (2006) Activation phase of cone phototransduction and the flicker electroretinogram in retinitis pigmentosa. Vision Res 46(17):2773–2785. https://doi.org/10.1016/j.visres.2006.01.007

    Article  PubMed  Google Scholar 

  28. Khani-Oskouee K, Sieving PA (1991) A digital band-pass filter for electrophysiology recording systems. In: Heckenlively J, Arden G (eds) Principles and Practice of Clinical Electrophysiology of Vision. Mosby Year Book, St Louis, pp 205–210

    Google Scholar 

  29. Rufiange M, Dumont M, Lachapelle P (2005) Modulation of the human photopic ERG luminance-response function with the use of chromatic stimuli. Vision Res 45(17):2321–2330. https://doi.org/10.1016/j.visres.2005.02.010

    Article  PubMed  Google Scholar 

  30. Chen H, Zhang M, Huang S, Wu D (2008) The photopic negative response of flash ERG in nonproliferative diabetic retinopathy. Doc Ophthalmol 117(2):129–135. https://doi.org/10.1007/s10633-008-9114-0

    Article  PubMed  Google Scholar 

  31. Kizawa J, Machida S, Kobayashi T, Gotoh Y, Kurosaka D (2006) Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy. Jpn J Ophthalmol 50(4):367–373. https://doi.org/10.1007/s10384-006-0326-0

    Article  PubMed  Google Scholar 

  32. Frishman L, Sustar M, Kremers J, McAnany JJ, Sarossy M, Tzekov R, Viswanathan S (2018) ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc Ophthalmol 136(3):207–211. https://doi.org/10.1007/s10633-018-9638-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hood DC, Birch DG (1996) Assessing abnormal rod photoreceptor activity with the a-wave of the electroretinogram: applications and methods. Doc Ophthalmol 92(4):253–267

    Article  PubMed  Google Scholar 

  34. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130(1):1–12. https://doi.org/10.1007/s10633-014-9473-7

    Article  PubMed  Google Scholar 

  35. Lachapelle P, Benoit J, Blain L, Guite P, Roy MS (1990) The oscillatory potentials in response to stimuli of photopic intensities delivered in dark-adaptation: an explanation for the conditioning flash effect. Vision Res 30(4):503–513

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Sun X, Hu Y, Huang J, Zhang H (1992) Electroretinographic oscillatory potentials in diabetic retinopathy. An analysis in the domains of time and frequency. Doc Ophthalmol 81 (2):173–179

    Article  CAS  PubMed  Google Scholar 

  37. Robson JG, Saszik SM, Ahmed J, Frishman LJ (2003) Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol 547(Pt 2):509–530. https://doi.org/10.1113/jphysiol.2002.030304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paupoo AA, Mahroo OA, Friedburg C, Lamb TD (2000) Human cone photoreceptor responses measured by the electroretinogram [correction of electoretinogram] a-wave during and after exposure to intense illumination. J Physiol 529(Pt 2):469–482. https://doi.org/10.1111/j.1469-7793.2000.00469.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bush RA, Sieving PA (1994) A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci 35(2):635–645

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

National Institutes of Health research Grants R01EY026004 (JM), P30EY001792 (Core Grant), an unrestricted departmental grant and a Dolly Green Scholar award (JM) from Research to Prevent Blindness.

Funding

This study was funded by National Institutes of Health research Grants R01EY026004 (JJM), P30EY001792 (Core Grant), an unrestricted departmental grant and a Dolly Green Scholar award (JJM) from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jason McAnany.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement on the welfare of animals

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Supplementary file2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAnany, J.J., Liu, K. & Park, J.C. Electrophysiological measures of dysfunction in early-stage diabetic retinopathy: No correlation between cone phototransduction and oscillatory potential abnormalities. Doc Ophthalmol 140, 31–42 (2020). https://doi.org/10.1007/s10633-019-09718-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-019-09718-2

Keywords

Navigation