Skip to main content
Log in

Stabilized Solution for a Time-Fractional Inverse Problem with an Unknown Nonlinear Condition

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

In this paper, we consider a time-fractional inverse problem in which the nonlinear boundary conditions contain an unknown function. A finite difference scheme will be proposed to solve numerically the inverse problem. This inverse problem is generally ill-posed. For this reason, we will employ the mollification regularization method with the generalized cross-validation criterion to find a stable solution. The stability and convergence of numerical solutions are investigated. Finally, some numerical examples are presented to illustrate the validity and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Beck, B. Blackwell, and C. R. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley, New York (1985).

    MATH  Google Scholar 

  2. V. Penenko, A. Baklanov, E. Tsvetova, and A. Mahura, “Direct and inverse problems in a variational concept of environmental modeling,” Pure. Appl. Geophys.,169, 447–465 (2012).

    Article  Google Scholar 

  3. D. A. Murio, Mollification and space marching, in: K. Woodbury (editor), Inverse Engineering Handbook, CRC Press, Boca Raton FL (2002).

    Google Scholar 

  4. A. Shidfar, J. Damirchi, and P. Reihani, “An stable numerical algorithm for identifying the solution of an inverse problem,” Appl. Math. Comput.,190, 231–236 (2007).

    MathSciNet  MATH  Google Scholar 

  5. I. Podlubny, Fractional Differential Equations, Academic Press, New York (1999).

    MATH  Google Scholar 

  6. R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep.,339, 1–77 (2000).

    Article  MathSciNet  Google Scholar 

  7. E. Scalas, R. Gorenflo, and F. Mainardi, “Fractional calculus and continuous-time finance,” Phys. A.,284, 376–384 (2000).

    Article  MathSciNet  Google Scholar 

  8. D. A. Murio, “Time fractional IHCP with Caputo fractional derivatives,” Comput. Math. Appl.,56, 2371–2381 (2008).

    Article  MathSciNet  Google Scholar 

  9. G. H. Zheng and T. Wei, “Spectral regularization method for the time fractional inverse advection–dispersion equation,” J. Comput. Appl. Math.,233, 2631–2640 (2010).

    Article  MathSciNet  Google Scholar 

  10. W. Rundell, X. Xu, and L. Zuo, “The determination of an unknown boundary condition in a fractional diffusion equation,” Appl. Anal., 92, 1511–1526 (2013).

    Article  MathSciNet  Google Scholar 

  11. A. Aldoghaither, D. Y. Liu, and T. M. Laleg-Kirati, “Modulating functions based algorithm for the estimation of the coefficients and differentiation order for a space-fractional advection-dispersion equation,” SIAM J. Sci. Comput.,37, 2813–2839 (2015).

    Article  MathSciNet  Google Scholar 

  12. F. F. Dou and Y. C. Hon, “Numerical computation for backward time-fractional diffusion equation,” Eng. Anal. Bound. Elem.,40, 138–146 (2014).

    Article  MathSciNet  Google Scholar 

  13. A. Taghavi, A. Babaei and A. Mohammadpour, “A stable numerical scheme for a time fractional inverse parabolic equation,” Inverse Probl. Sci. Eng.,25, 1474–1491 (2017) .

    Article  MathSciNet  Google Scholar 

  14. A. Babaei, S. Banihashemi, “Reconstructing unknown nonlinear boundary conditions in a time-fractional inverse reaction-diffusionconvection problem,” Numer. Meth. Part. D. E., 25, 976–992 (2019).

    Article  Google Scholar 

  15. M. Garshasbi and H. Dastour, “Estimation of unknown boundary functions in an inverse heat conduction problem using a mollified marching scheme,” Numer. Algorithms, 68, 769–790 (2015).

    Article  MathSciNet  Google Scholar 

  16. A. Tveito and R. Winther, Introduction to Partial Differential Equations, Springer-Verlag, New York (1998).

    MATH  Google Scholar 

  17. G. Evans, J. Blackledge, and P. Yardley, Numerical Methods for Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, New York (2000).

    Book  Google Scholar 

  18. S. B. Yuste and J. Quintana-Murillo, “A finite difference method with non-uniform time steps for fractional diffusion equations,” Comput. Phys. Commun.183, 2594–2600 (2012).

    Article  MathSciNet  Google Scholar 

  19. D. A. Murio, “Stable numerical solution of a fractional-diffusion inverse heat conduction problem,” Comput. Math. Appl., 53, 1492–1501 (2007).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Babaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaei, A., Banihashemi, S. Stabilized Solution for a Time-Fractional Inverse Problem with an Unknown Nonlinear Condition. Comput Math Model 30, 340–351 (2019). https://doi.org/10.1007/s10598-019-09460-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-019-09460-z

Keywords

Navigation