Skip to main content
Log in

A novel iterative integration regularization method for ill-posed inverse problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper proposes a new iterative integration regularization method for robust solution of ill-posed inverse problems. The proposed method is motivated from the fact that inversion of a positive definite matrix can be expressed in an integral form. Then, the development of the proposed method is mainly twofold. Firstly, two ways—including the linear iteration and the exponential (\(2^j\)) iteration—are invoked to compute the integral, of which the exponential iteration is often preferred due to its fast convergence. Secondly, after stability analysis, the proposed method is shown able to filter out the undesired effect of relatively small singular values, while preserving the desired terms of relatively large singular values, i.e., the proposed method has the guaranteed regularization effect. Numerical examples on three typical ill-posed problems are conducted with detailed comparison to some usual direct and iterative regularization methods. Final results have highlighted the proposed method: (a) due to the iterative nature, the proposed method often turns out to be more efficient than the conventional direct regularization methods including the Tikhonov regularization and the truncated singular value decomposition (TSVD), (b) the proposed method converges much faster than the Landweber method and (c) the regularization effect is guaranteed in the proposed method, while may not be in the conjugate gradient method for least squares problem (CGLS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ertveldt J, Pintelon R, Vanlanduit S (2016) Identification of unsteady aerodynamic forces from forced motion wind tunnel experiments. AIAA J 54(10):3265–3273

    Article  Google Scholar 

  2. Maes K, Weijtjens W, de Ridder EJ, Lombaert G (2018) Inverse estimation of breaking wave loads on monopile wind turbines. Ocean Eng 163:544–554

    Article  Google Scholar 

  3. Wang L, Liu J, Xie Y, Gu Y (2018) A new regularization method for the dynamic load identification of stochastic structures. Comput Math Appl 76:741–759

    Article  MathSciNet  Google Scholar 

  4. Xu H, Zhang L, Li Q (2019) A novel inverse procedure for load identification based on improved artificial tree algorithm. Eng Comput. https://doi.org/10.1007/s00366-019-00848-4

    Article  Google Scholar 

  5. Ahmadian H, Mottershead JE, Friswell MI (1998) Regularization methods for finite element model updating. Mech Syst Signal Process 12(1):47–64

    Article  Google Scholar 

  6. Titurus B, Friswell MI (2008) Regularization in model updating. Int J Numer Methods Eng 75:440–478

    Article  MathSciNet  Google Scholar 

  7. Rubio PB, Louf F, Chamoin L (2018) Fast model updating coupling Bayesian inference and PGD model reduction. Comput Mech 62(6):1485–1509

    Article  MathSciNet  Google Scholar 

  8. Wei T, Hon YC, Ling L (2007) Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators. Eng Anal Bound Elem 31:373–385

    Article  Google Scholar 

  9. Shivanian E, Jafarabadi A (2017) Inverse Cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation. Eng Comput 33:431–442

    Article  Google Scholar 

  10. Kabanikhin SI (2008) Definitions and examples of inverse and ill-posed problems. J Inverse Ill Posed Probl 16:317–357

    MathSciNet  MATH  Google Scholar 

  11. Benning M, Burger M (2018) Modern regularization methods for inverse problems. Acta Num 27:1–111

    Article  MathSciNet  Google Scholar 

  12. Tikhonov AN (1963) On the solution of ill-posed problems and the method of regularization. Soviet Mathe 4:1035–1038

    MATH  Google Scholar 

  13. Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34(4):561–580

    Article  MathSciNet  Google Scholar 

  14. Bryan K, Leise T (2013) Making do with less: an introduction to compressed sensing. SIAM Rev 55(3):547–566

    Article  MathSciNet  Google Scholar 

  15. Kim SJ, Koh K, Boyd S, Gorinevsky D (2009) \(\ell _1\) trend filtering. SIAM Rev 51(2):339–360

    Article  MathSciNet  Google Scholar 

  16. Grasmair M, Haltmeier M, Scherzer O (2008) Sparse regularization with \(\ell ^q\) penalty term. Inverse Probl 24(5):055020

    Article  MathSciNet  Google Scholar 

  17. Strong D, Chan T (2003) Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl 19:S165–S187

    Article  MathSciNet  Google Scholar 

  18. Hansen PC, O’Leary DP (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14(6):1487–1503

    Article  MathSciNet  Google Scholar 

  19. Hansen PC (2007) Regularization tools version 4.1 for matlab 7.3. Numer Algorithms 46:189–194

    Article  MathSciNet  Google Scholar 

  20. Hansen PC (1987) The truncated SVD as a method for regularization. BIT Numer Math 27:354–553

    Article  MathSciNet  Google Scholar 

  21. Hansen PC (2002) Deconvolution and regularization with Toeplitz matrices. Numer Algorithms 29:323–378

    Article  MathSciNet  Google Scholar 

  22. Wang L, Xie Y, Wu Z, Du Y, He K (2019) A new fast convergent iteration regularization method. Eng Comput 35:127–138

    Article  Google Scholar 

  23. Landweber L (1951) An iteration formula for Fredholm integration equations of the first kind. Am J Math 73:615–624

    Article  MathSciNet  Google Scholar 

  24. Hanke M (1995) The minimal error conjugate gradient method is a regularization method. Proc Am Math Soc 123(11):3487–3497

    Article  MathSciNet  Google Scholar 

  25. Nagy JG, Palmer KM (2003) Steepest descent, CG, and iterative regularization of ill-posed problems. BIT Numer Math 43:1003–1017

    Article  MathSciNet  Google Scholar 

  26. Bauer F, Lukas MA (2011) Comparing parameter choice methods for regularization of ill-posed problems. Math Comput Simul 81:1795–1841

    Article  MathSciNet  Google Scholar 

  27. Lukas MA (2006) Robust generalized cross-validation for choosing the regularization parameter. Inverse Probl 22:1883–1902

    Article  MathSciNet  Google Scholar 

  28. Liao H, Ng MK (2011) Blind deconvolution using generalized cross-validation approach to regularization parameter estimation. IEEE Trans Image Process 20(3):670–680

    Article  MathSciNet  Google Scholar 

  29. Hou R, Xia Y, Bao Y, Zhou X (2018) Selection of regularization prameter for \(l_1\)-regularized damage detection. J Sound Vib 423:141–160

    Article  Google Scholar 

  30. Rieder A (2005) Inexact Newton regularization using conjugate gradients as inner iteration. SIAM J Numer Anal 43(2):604–622

    Article  MathSciNet  Google Scholar 

  31. Hanke M (2001) On Lanczos based methods for the regularization of discrete ill-posed problems. BIT Numer Math 41(5):1008–1018

    Article  MathSciNet  Google Scholar 

  32. Marin L, Lesnic D (2005) The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations. Comput Struct 83:267–278

    Article  MathSciNet  Google Scholar 

  33. Dongarra J, Gates M, Haidar A, Kurzak J, Luszczek P, Tomov S, Yamazaki I (2018) The singular value decomposition: anatomy of optimizing an algorithm for extreme scale. SIAM Rev 60(4):808–865

    Article  MathSciNet  Google Scholar 

  34. Berntsson F, Lin C, Xu T, Wokiyi D (2017) An efficient regularization method for a large scale ill-posed geothermal problem. Comput Geosci 105:1–9

    Article  Google Scholar 

  35. Hansen PC (1998) Rank-deficient and discrete ill-posed problems. Numerical aspects of linear inversion. SIAM, Philadelphia

    Book  Google Scholar 

  36. Zhong WX (2004) On precise integration method. J Comput Appl Math 163:59–78

    Article  MathSciNet  Google Scholar 

  37. Castellanos JL, Gomez S, Guerra V (2002) The triangle method for finding the corner of the L-curve. Appl Numer Math 43:359–373

    Article  MathSciNet  Google Scholar 

  38. Wazwaz AM (2011) The regularization method for Fredholm integral equations of the first kind. Comput Math Appl 61:2981–2986

    Article  MathSciNet  Google Scholar 

  39. Vogel CR, Oman ME (1998) Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans Image Process 7(6):813–824

    Article  MathSciNet  Google Scholar 

  40. Chen Z, Chan THT (2017) A truncated generalized singular value decomposition algorithm for moving force identification with ill-posed problems. J Sound Vib 401:297–310

    Article  Google Scholar 

  41. Chen Z, Chan THT, Nguten A (2018) Moving force identification based on modified conjugate gradient method. J Sound Vib 423:100–117

    Article  Google Scholar 

Download references

Acknowledgements

The present investigation was performed under the support of National Natural Science Foundation of China (nos. 11702336 and 11972380), Guangdong Province Natural Science Foundation (no. 2017A030313007 and no. 2018B030311001) and the Fundamental Research Funds of the Central Universities (no. 17lgpy54 and no. 19lgpy106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To get the matrix \({\mathbf {A}}\) for force reconstruction in structural systems, the Newmark method for solution of the dynamic equation is called for \(k=1,2,\ldots ,N_\mathrm{{T}}\),

$$\begin{aligned} \left\{ \begin{array}{l} {\mathbf {M}} \ddot{{\varvec{u}}}(t_{k+1}) + {\mathbf {C}} \dot{{\varvec{u}}} (t_{k+1})+{\mathbf {K}} {{\varvec{u}}}(t_{k+1})={\mathbf {G}} {\varvec{f}}(t_{k+1}), \\ \dot{{\varvec{u}}} (t_{k+1})=\dot{{\varvec{u}}} (t_{k})+[\gamma \ddot{{\varvec{u}}} (t_{k+1})+(1-\gamma )\dot{{\varvec{u}}} (t_{k})] \Delta t, \\ {{\varvec{u}}} (t_{k+1})={{\varvec{u}}} (t_{k})+\dot{{\varvec{u}}} (t_{k}) \Delta t +[\beta \ddot{{\varvec{u}}} (t_{k+1})+(1/2-\beta ) \ddot{{\varvec{u}}} (t_{k})] \Delta t^2, \end{array} \right. \end{aligned}$$
(71)

where \(\gamma =1/2,\beta =1/4\) are fixed in this paper, \(\mathbf {M,C,K}\) are the mass, damping and stiffness matrices, \({\varvec{u}}(t)\) denotes the displacements, \({\varvec{f}}(t)\) collects all independent forces and \({\mathbf {G}}\) describes the spatial distributions of the forces. Simple manipulations on Eq. (71) can yield the following state equation

$$\begin{aligned} \left( \begin{array}{l} {\varvec{u}}(t_{k+1}) \\ \dot{{\varvec{u}}} (t_{k+1}) \end{array}\right) ={\mathbf {B}} \left( \begin{array}{l} {\varvec{u}}(t_{k}) \\ \dot{{\varvec{u}}} (t_{k}) \end{array}\right) +{\mathbf {Z}}_1 {\mathbf {G}} {\varvec{f}}(t_{k})+{\mathbf {Z}}_2 {\mathbf {G}} {\varvec{f}}(t_{k+1}), \end{aligned}$$
(72)

with

$$\begin{aligned} \begin{aligned} {\mathbf {B}}&=\left( \begin{array}{cc} \gamma {\mathbf {K}} &{} \gamma {\mathbf {C}}+{\mathbf {M}} /\Delta t\\ 2\beta {\mathbf {K}} +2{\mathbf {M}}/\Delta t^2 &{} 2 \beta {\mathbf {C}} \\ \end{array} \right) ^{-1}\\&\quad \left( \begin{array}{cc} -(1-\gamma ) {\mathbf {K}} &{} -(1-\gamma ) {\mathbf {C}}+{\mathbf {M}}/\Delta t \\ -(1-2\beta ) {\mathbf {K}} +2{\mathbf {M}}/\Delta t^2 &{} -(1-2 \beta ) {\mathbf {C}}+ 2{\mathbf {M}}/\Delta t\\ \end{array} \right) \\ {\mathbf {Z}}_1&=\left( \begin{array}{cc} \gamma {\mathbf {K}} &{} \gamma {\mathbf {C}}+{\mathbf {M}}/\Delta t \\ 2\beta {\mathbf {K}} +2{\mathbf {M}}/\Delta t^2 &{} 2 \beta {\mathbf {C}} \\ \end{array} \right) ^{-1}\left( \begin{array}{c} (1-\gamma ){\mathbf {I}} \\ (1-2\beta ){\mathbf {I}} \\ \end{array} \right) \\ {\mathbf {Z}}_2&=\left( \begin{array}{cc} \gamma {\mathbf {K}} &{} \gamma {\mathbf {C}}+{\mathbf {M}}/\Delta t \\ 2\beta {\mathbf {K}} +2{\mathbf {M}}/\Delta t^2 &{} 2 \beta {\mathbf {C}} \\ \end{array} \right) ^{-1}\left( \begin{array}{c} \gamma {\mathbf {I}} \\ 2\beta {\mathbf {I}} \\ \end{array} \right) \end{aligned} \end{aligned}$$
(73)

where \({\mathbf {I}}\) denotes the identity matrix, \(\Delta t=t_{k+1}-t_k\). The measured data \({\varvec{d}}(t_k),\forall k\) are often of the form

$$\begin{aligned} {\varvec{d}}(t_k)={\mathbf {O}} \left( \begin{array}{c} {\varvec{u}}(t_k) \\ \dot{{\varvec{u}}}(t_k) \\ \end{array} \right) +{\mathbf {D}} {\mathbf {G}}{\varvec{f}}(t_k), \end{aligned}$$
(74)

where \(\mathbf {O,D}\) are observation matrices. Setting the initial states \({\varvec{u}}(t_1)=\dot{{\varvec{u}}}(t_1)={\varvec{0}}\) and combining (72) with (74), it is acquired that

$$\begin{aligned} \begin{aligned} {\varvec{b}}&={\mathbf {A}}{\varvec{x}} \\ {\varvec{b}}&=[{\varvec{d}}(t_1);{\varvec{d}}(t_2);...;{\varvec{d}}(t_{N_T})],{\varvec{x}} =[{\varvec{f}}(t_1);{\varvec{f}}(t_2);...;{\varvec{f}}(t_{N_T})] \\ {\mathbf {A}}&=\left( \begin{array}{ccccc} \mathbf {DG} &{} &{} &{} &{} \\ \mathbf {OZ_1G} &{} \mathbf {DG+OZ_2G} &{} &{} &{} \\ \\ \vdots &{} \vdots &{} &{} \ddots &{} \\ \mathbf {OB}^{N_T-3}\mathbf {Z_1G}&{} \mathbf {OB}^{N_T-4}\mathbf {Z_1G+OB}^{N_T-3}\mathbf {Z_2G} &{} \cdots &{} \mathbf {DG+OZ_2G}&{} \\ \mathbf {OB}^{N_T-2}\mathbf {Z_1G}&{} \mathbf {OB}^{N_T-3}\mathbf {Z_1G+OB}^{N_T-2}\mathbf {Z_2G} &{} \cdots &{} \mathbf {OZ_1G+OBZ_2G} &{} \mathbf {DG+OZ_2G} \\ \end{array} \right) . \end{aligned} \end{aligned}$$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Wang, L., Fu, M. et al. A novel iterative integration regularization method for ill-posed inverse problems. Engineering with Computers 37, 1921–1941 (2021). https://doi.org/10.1007/s00366-019-00920-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00920-z

Keywords

Navigation