Skip to main content
Log in

A molecular electron density theory study of mechanism and selectivity of the intramolecular [3+2] cycloaddition reaction of a nitrone–vinylphosphonate adduct

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The selectivity and the molecular mechanism of the intramolecular [3+2] cycloaddition reaction of a nitrone–vinylphosphonate adduct was computationally studied within the molecular electron density theory using density functional theory method at the B3LYP/6-31G(d,p) level of theory. Conceptual density functional theory indices show that the nitrone–vinylphosphonate adduct has dual strong electrophilic and nucleophilic character. Local Parr functions reactivity indices reveal that this reaction favors the formation of the fused regioisomers in accordance with the experimental data. Analysis of different energetic profiles indicates that the fused-endo competitive pathway is favored kinetically, whereby this intramolecular reaction is characterized by exothermic and exergonic character. The geometry of transition states structures shows that the mechanism of this cycloaddition reaction is synchronous. Electron localization function topological analysis of the changes in electron density during the most favored reaction pathway shows that the mechanism is synchronous non-concerted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Figure 1.
Figure 2.
Scheme 3.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. Kaur, N. J. Heterocycl. Chem. 2015, 52, 953.

    Article  CAS  Google Scholar 

  2. Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon Press: London, 1990. eBook; Elsevier, 2013.

  3. Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984, Vol. 1, p. 55.

  4. Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.

    Article  CAS  PubMed  Google Scholar 

  5. Berthet, M.; Cheviet, T.; Dujardin, G.; Parrot, I.; Martinez, J. Chem. Rev. 2016, 116, 15235.

    Article  CAS  PubMed  Google Scholar 

  6. Sadashiva, M. P.; Mallesha, H.; Murthy, K. K.; Rangappa, K. S. Bioorg. Med. Chem. Lett. 2005, 15, 1811.

    Google Scholar 

  7. Żelechowski, K.; Gołębiewski, W. M.; Krawczyk, M. Monatsh. Chem. 2015, 146, 1895.

    Google Scholar 

  8. Mullen, G. B.; Swift, P. A.; Georgiev, V. S. J. Pharm. Sci. 1987, 76, 930.

    Article  CAS  PubMed  Google Scholar 

  9. Kaur, M.; Singh, B.; Singh, B.; Arjuna, A. J. Heterocycl. Chem. 2017, 54, 1348.

    Article  CAS  Google Scholar 

  10. Groaz, E.; De Jonghe, S. Front. Chem. 2020, 8, 616863.

    Article  CAS  PubMed  Google Scholar 

  11. Sennikova, V. V; Zalaltdinova, A. V; Sadykova, Y. M.; Khamatgalimov, A. R.; Gazizov, A. S.; Voloshina, A. D.; Lyubina, A. P.; Amerhanova, S. K.; Voronina, J. K.; Chugunova, E. A.; Appazov, N. O.; Burilov, A. R.; Pudovik, M. A. Int. J. Mol. Sci. 2022, 23, 14348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turhanen, P. A. J. Biomed. Res. Environ. Sci. 2022, 3, 195.

    Google Scholar 

  13. Duret, G.; Quinlan, R.; Yin, B.; Martin, R. E.; Bisseret, P.; Neuburger, M.; Gandon, V.; Blanchard, N. J. Org. Chem. 2017, 82, 1726.

    Article  CAS  PubMed  Google Scholar 

  14. Chafaa, F.; Hellel, D.; Khorief, A.; Djerourou, A. A. Tetrahedron Lett. 2016, 57, 67.

    Article  CAS  Google Scholar 

  15. Chafaa, F.; Nacereddine, A. K.; Djerourou, A. Lett. Org. Chem. 2020, 17, 260.

    Article  CAS  Google Scholar 

  16. Domingo, L. R.; Ríos-Gutiérrez, M.; Adjieufack, A. I.; Ndassa, I. M.; Nouhou, C. N.; Mbadcam, J. K. ChemistrySelect 2018, 3, 5412.

    Article  CAS  Google Scholar 

  17. Jasiński, R.; Dresler, E. Organics 2020, 1, 49.

    Article  Google Scholar 

  18. Jasiński, R. Tetrahedron 2013, 69, 927.

    Article  Google Scholar 

  19. Sobhi, C.; Khorief Nacereddine, A.; Djerourou, A.; Ríos-Gutiérrez, M.; Domingo, L. R. J. Phys. Org. Chem. 2017, 30, e3637.

    Article  Google Scholar 

  20. Żmigrodzka, M.; Sadowski, M.; Kras, J.; Dresler, E.; Demchuk, O. M.; Kula, K. Sci. Rad. 2022, 1, 26.

    Article  Google Scholar 

  21. Barama, L.; Bayoud, B.; Chafaa, F.; Nacereddine, A. K.; Djerourou, A. Struct. Chem. 2018, 29, 1709.

    Article  CAS  Google Scholar 

  22. Lamri, S.; Heddam, A.; Kara, M.; Yahia, W.; Khorief Nacereddine, A. Organics 2021, 2, 57.

    Article  CAS  Google Scholar 

  23. Hamdaoui, H.; Khorief Nacereddine, A.; Djerourou, A. J. Phys. Org. Chem. 2022, 36, e4462.

    Google Scholar 

  24. Sadi, S.; Khorief Nacereddine, A.; Djerourou, A. J. Phys. Org. Chem. 2022, 35, e4311.

    Article  CAS  Google Scholar 

  25. Domingo, L. R. Molecules 2016, 21, 1319.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ríos-Gutiérrez, M.; Domingo, L. R. Eur. J. Org. Chem. 2019, 267.

  27. Koumbis, A. E.; Gallos, J. K. Curr. Org. Chem. 2003, 7, 585.

    Article  CAS  Google Scholar 

  28. Tufariello, J. J. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984, vol. 2, p. 83.

  29. Huang, T.; Wang, Q.; Kong, D.; Wu, M. Tetrahedron Lett. 2019, 60, 150913.

    Article  CAS  Google Scholar 

  30. Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. Tetrahedron 2002, 58, 4417.

    Article  CAS  Google Scholar 

  31. Jaramillo, P.; Domingo, L. R.; Chamorro, E.; Pérez, P. A J. Mol. Struct.: THEOCHEM 2008, 865, 68.

    Article  CAS  Google Scholar 

  32. Domingo, L. R.; Sáez, J. A. Org. Biomol. Chem. 2009, 7, 3576.

    Article  CAS  PubMed  Google Scholar 

  33. Domingo, L. R.; Pérez, P.; Sáez, J. A. RSC Adv. 2013, 3, 1486.

    Article  CAS  Google Scholar 

  34. Domingo, L. R. RSC Adv. 2014, 4, 32415.

    Article  CAS  Google Scholar 

  35. Emamian, S.; Lu, T.; Domingo, L. R.; Heidarpoor Saremi, L.; Ríos-Gutiérrez, M. Chem. Phys. 2018, 501, 128.

    Article  CAS  Google Scholar 

  36. Benchouk, W.; Mekelleche, S. M.; Silvi, B.; Aurell, M. J.; Domingo, L. R. J. Phys. Org. Chem. 2011, 24, 611.

    Article  CAS  Google Scholar 

  37. Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.

    Article  CAS  Google Scholar 

  38. Nacereddine, A. K. J. Mol. Model. 2020, 26, 328.

    Article  Google Scholar 

  39. Yahia, W.; Nacereddine, A. K.; Djerourou, A. Intl. J. Quantum Chem. 2017, 118, e25540.

    Article  Google Scholar 

  40. Chafaa, F.; Nacereddine, A. K.; Djerourou, A. Theor. Chem. Acc. 2019, 123.

  41. Domingo, L. R.; Sáez, J. A. J. Org. Chem. 2011, 76, 373.

    Article  CAS  PubMed  Google Scholar 

  42. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, Ma.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, 2016.

  43. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.

    Article  CAS  Google Scholar 

  44. Becke, A. D. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098.

  45. Ríos-Gutiérrez, M.; Domingo, L. R.; Jasiński, R. RSC Adv. 2021, 11, 9698.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mitka, K.; Fela, K.; Olszewska, A.; Jasiński, R. Molecules 2021, 26, 7147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Layeb, H.; Nacereddine, A. K.; Djerourou, A.; Ríos-Gutiérrez, M.; Domingo, L. R. J. Mol. Model. 2015, 21, 104.

    Article  PubMed  Google Scholar 

  48. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027.

    Google Scholar 

  49. Cancès, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.

    Article  Google Scholar 

  50. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.

    Article  CAS  Google Scholar 

  51. Becke, A. D. J. Chem. Phys. 1993, 98(7), 5648.

    Article  CAS  Google Scholar 

  52. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.

    Article  CAS  Google Scholar 

  53. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.

    Article  CAS  Google Scholar 

  54. Fukui, K. J. Phys. Chem. 1970, 74, 4161.

    Article  CAS  Google Scholar 

  55. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1991, 95, 5853.

    Article  CAS  Google Scholar 

  56. Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793.

    Article  CAS  PubMed  Google Scholar 

  57. Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. Molecules 2016, 21, 748.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.

    Article  CAS  Google Scholar 

  59. Parr, R. G.; Szentpály, L. v.; Liu, S. J. Am. Chem. Soc. 1999, 12, 1922.

  60. Domingo, L. R.; Chamorro, E.; Pérez, P. J. Org. Chem. 2008, 73, 4615.

    Article  CAS  PubMed  Google Scholar 

  61. Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.

    Article  PubMed  Google Scholar 

Download references

This work was supported by the Ministry of Higher Education and Scientific Research of the Algerian Government (project PRFU Code: B00L01EN210120220001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Khorief Nacereddine.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2023, 59(3), 171–178

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 318 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chafaa, F., Nacereddine, A.K. A molecular electron density theory study of mechanism and selectivity of the intramolecular [3+2] cycloaddition reaction of a nitrone–vinylphosphonate adduct. Chem Heterocycl Comp 59, 171–178 (2023). https://doi.org/10.1007/s10593-023-03179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-023-03179-x

Keywords

Navigation