Skip to main content

Advertisement

Log in

A mechanistic MEDT study of the competitive catalysed [4+2] and [2+2] cycloaddition reactions between 1-methyl-1-phenylallene and methyl acrylate: the role of Lewis acid on the mechanism and selectivity

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The selectivity and the nature of the mechanism of the competitive Lewis acid catalysed [4+2]/[2+2] cycloaddition reactions of 1-methyl-1-phenylallene (MPA) with methylacrylate (MA) have been theoretically studied within the Molecular Electron Density Theory using DFT methods at the B3LYP/6-31G(d) theoretical level. DFT reactivity indices indicate that MPA is a strong nucleophile and the LA-MA complex is a strong electrophile. The coordination of LA to MA enhances the reaction rate and increases the asynchronicity of the [4+2] CA reaction, changes the nature of the mechanism from one step to stepwise for the [2+2] CA reaction and increases the polar character of these cycloaddition reactions, which become demands a relatively low activation energy. Analysis of different energy profiles indicates that these competitive LA-catalysed CA reactions favour the formation of a mixture of meta regioisomers in both types of cycloaddition, in which the [4+2] cycloadducts were obtained in majority amount, in agreement with the experiment. Analysis based on Electron Localisation Function topological shows that the favoured [4+2] CA reaction takes place through a non-concerted two-stage one-step mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Scheme 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Carruthers, Cycloaddition reactions in organic synthesis, Pergamon, Oxford, 1990

  2. Fringuelli F, Taticchi A (1990) Dienes in the Diels–Alder reaction. Wiley, New York

    Google Scholar 

  3. Paquette LA (1991) In comprehensive organic synthesis, vol 5. PergamonPress, Oxford

    Google Scholar 

  4. Hayashi Y, Narasaka K (1989). Chem Lett:793

  5. Narasaka K, Hayashi K, Hayashi Y (1994). Tetrahedron 50:4529

    Article  CAS  Google Scholar 

  6. Takenaka Y, Ito H, Hasegawa M, Iguchi K (2006). Tetrahedron 62:3380

    Article  CAS  Google Scholar 

  7. Mitsudo TA, Naruse H, Kondo T, Ozaki Y, Watanabe Y (1994). Angew Chem Int Ed 33:580–581

    Article  Google Scholar 

  8. Wei D, Zhu Y, Zhang C, Sun D, Zhang W, Tang M (2011). J Mol Catal A Chem 334:108–115

    Article  CAS  Google Scholar 

  9. Nacereddine AK, Yahia W, Sobhi C, Djerourou A (2012). Tetrahedron Lett 53:5784

    Article  CAS  Google Scholar 

  10. Bouacha S, Nacereddine AK, Djerourou A (2013). Tetrahedron Lett 54:4030

    Article  CAS  Google Scholar 

  11. Jasiński R (2016). Reac Kinet Mech Cat 119:49

    Article  Google Scholar 

  12. Huisgen R (1980). Pure Appl Chem 52:2283

    Article  CAS  Google Scholar 

  13. Firestone RA (1996). Tetrahedron 52(46):14459–14468

    Article  CAS  Google Scholar 

  14. Singleton DA, Schulmeier BE, Hang C, Thomas AA, Leung SW, Merrigan SR (2001). Tetrahedron 57(24):5149–5160

    Article  CAS  Google Scholar 

  15. Jasiński R, Kubik M, Łapczuk-Krygier A, Kącka A, Dresler E, Boguszewska-Czubara A (2014). React Kinet Mech Catal 113:333–345

    Article  Google Scholar 

  16. Jasiński R (2014). Comput Theor Chem 1046:93–98

    Article  Google Scholar 

  17. Jasiński R (2017). J Mol Graph Model 75:55–61

    Article  Google Scholar 

  18. Conner ML, Brown MK (2016). Tetrahedron 72:3759

    Article  CAS  Google Scholar 

  19. Bartlett PD, Wallbillich G, Wingrove AS, Swenton JS, Montgomery LK, Kramer BD (1968). J Am Chem Soc 90(8):2049–2056

    Article  CAS  Google Scholar 

  20. Nacereddine K, Yahia W, Bouacha S, Djerourou A (2010). Tetrahedron Lett 51:2617

    Article  CAS  Google Scholar 

  21. Yahia W, Khorief Nacereddine A, Liacha M, Djerourou A (2018). Int J Quantum Chem 118:e25540

    Article  Google Scholar 

  22. Sobhi C, Nacereddine AK, Djerourou A, Aurell MJ, Domingo LR (2012). Tetrahedron 68:8457

    Article  CAS  Google Scholar 

  23. Yahia W, Nacereddine AK, Liacha M (2014). Prog React Kinet Mec 39:365

    Article  CAS  Google Scholar 

  24. Chafaa F, Hellel D, Nacereddine AK, Djerourou A (2016). Tetrahedron Lett 57:67–70

    Article  CAS  Google Scholar 

  25. Dennington, R.; Keith, T.; Millam, J. (2009) GaussView, version 5; Semichem Inc.: Shawnee Mission, KS

  26. Frisch MJ et al (2009) Gaussian 09, revision A.02. Gaussian Inc. Wallingford

    Google Scholar 

  27. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

    Article  CAS  Google Scholar 

  28. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  29. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  30. Tomasi J, Persico M (1994). Chem Rev 94:2027

    Article  CAS  Google Scholar 

  31. Simkin BY, Sheikhet I (1995) Quantum chemical and statistical theory of solutions a computational approach. Ellis Horwood, London

    Google Scholar 

  32. Cances E, Mennucci B, Tomasi J (1997). J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  33. Cossi M, Barone V, Cammi R, Tomasi J (1996). Chem Phys Lett 255:327

    Article  CAS  Google Scholar 

  34. Barone V, Cossi M, Tomasi J (1998). J Comput Chem 19:404

    Article  CAS  Google Scholar 

  35. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  36. Becke AD, Weinstock RB, Weinhold F (1985). J Chem Phys 83:735

    Article  Google Scholar 

  37. Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899

    Article  CAS  Google Scholar 

  38. Becke AD, Edgecombe KE (1990). J. Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  39. Lu T, Chen F (2012). J Comput Chem 33:580–592

    Article  Google Scholar 

  40. Parr RG, Von Szentpaly L, Liu S (1999). J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  41. Parr RG, Szentpaly LV, Liu S (1983). J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  42. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  43. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008). J. Mol. Struct. THEOCHEM 865:68–76

  44. Kohn W, Sham LJ (1965). Phys Rev 140:1133–1138

    Article  Google Scholar 

  45. Domingo LR, Pérez P, Sáez JA (2013). RSC Adv 3:1486–1494

    Article  CAS  Google Scholar 

  46. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002). Tetrahedron 58:4417

    Article  CAS  Google Scholar 

  47. Domingo LR, Pérez P (2013). Org Biomol Chem 11:4350

    Article  CAS  Google Scholar 

  48. Domingo LR, Emamian SR (2014). Tetrahedron 70:1267

    Article  CAS  Google Scholar 

  49. Nacereddine AK, Layeb H, Chafaa F, Yahia W, Djerourou A, Domingo LR (2015). RSC Adv 5:64098

    Article  CAS  Google Scholar 

  50. Chafaa F, Hellel D, Nacereddine AK, Djerourou A (2016). Mol Phys 114:663

    Article  CAS  Google Scholar 

  51. Hellel D, Chafaa F, Nacereddine AK, Djerourou A, Vrancken E (2017). RSC Adv 7:30128

    Article  CAS  Google Scholar 

  52. Ríos-Gutiérrez M, Chafaa F, Nacereddine AK, Djerourou A, Domingo LR (2016). J Mol Graphics Modell 70:296–304

    Article  Google Scholar 

  53. Wiberg KB (1968). Tetrahedron 24:1083

    Article  CAS  Google Scholar 

  54. Domingo LR (2014). RSC Adv 4:32415

    Article  CAS  Google Scholar 

  55. Berski S, Gordon AJ (2012). Chem Phys Lett 525–526:24–31

    Article  Google Scholar 

  56. Durlak P, Mierzwicki K, Latajka Z, Ratajczak H (2010). J Mol Struct 976:392–396

    Article  CAS  Google Scholar 

  57. Hernández-Trujillo J, García-Cruz I, Martínez-Magadán JM (2005). Chem Phys 308:181–192

    Article  Google Scholar 

  58. Domingo LR (2016). Molecules 21:1319

    Article  Google Scholar 

  59. Emamian, S., Lu, T., Domingo, L. R., Saremi, L. H., Ríos-Gutiérrez, M. (2018). Chemical physics

  60. Nasri L, Ríos-Gutiérrez M, Nacereddine AK, Djerourou A, Domingo LR (2017). Theor Chem Acc 136(104)

  61. Ríos-Gutiérrez M, Nasri L, Khorief Nacereddine A, Djerourou A, Domingo LR (2018). J Phys Org Chem:e3830

  62. Domingo LR, Ríos-Gutiérrez M, Pérez P (2018). J Org Chem

  63. Domingo LR, Saéz JA, Zaragozá RJ, Arnó M (2008). J Org Chem 73:8791

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Khorief Nacereddine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barama, L., Bayoud, B., Chafaa, F. et al. A mechanistic MEDT study of the competitive catalysed [4+2] and [2+2] cycloaddition reactions between 1-methyl-1-phenylallene and methyl acrylate: the role of Lewis acid on the mechanism and selectivity. Struct Chem 29, 1709–1721 (2018). https://doi.org/10.1007/s11224-018-1152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1152-y

Keywords

Navigation