Skip to main content

Advertisement

Log in

Considering evolutionary processes in cycad conservation: identification of evolutionarily significant units within Dioon sonorense (Zamiaceae) in northwestern Mexico

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Cycads are considered to be the most threatened plant group on Earth. Thus, the identification of important biological units for conservation is crucial for their management and protection. Taxonomic studies have enormously contributed to cycad conservation, since species descriptions formally recognize biodiversity components that can be considered in conservation. However, because multidisciplinary studies that evaluate the biodiversity within cycad species are almost non-existent intraspecific evolutionarily significant units (ESUs) have not been considered when making conservation plans. The cycad Dioon sonorense (Zamiaceae) has a relatively wide distribution range along a vegetation gradient in Northwest Mexico: the southern populations of D. sonorense occur in tropical forests, whereas the northern populations occur in more xeric environments in the Sonoran Desert. Although both habitats might have promoted important evolutionary trends within D. sonorense, only the southern populations are being conserved. Here, we evaluated whether intrinsic differentiation among populations of D. sonorense exists, and whether northern populations may merit attention in conservation programs. We analyzed the variation of genome-wide loci to evaluate the genetic structure among six populations. We found two clusters, northern and southern, that can be recognized using 361 neutral loci. Such genetic structure is consistent with the differentiation observed from the variation of 16 macromorphological and 9 epidermal traits. Southern and northern regions are clearly differentiated in genetic, morphological and anatomical analyses. These multidisciplinary results suggest that the northernmost populations of D. sonorense represent an ESU that should be included in conservation programs. This study highlights that the evaluation of intraspecific variation may contribute effective strategies for cycad conservation, and that evolutionary processes should be considered in the delimitation of conservation units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez-Yépiz JC, Dovčiak M, Búrquez A (2011) Persistence of a rare ancient cycad: effects of environment and demography. Biol Conserv 144:122–130

    Article  Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F-st outlier method. BMC Bioinform 9:323

    Article  CAS  Google Scholar 

  • Aronne G, De Micco V (2001) Seasonal dimorphism in the Mediterranean Cistus incanus L. subsp. incanus. Ann Bot 87:789–794

    Article  Google Scholar 

  • Barone-Lumaga MR, Coiro M, Truernit E, Erdei B, De Luca P (2015) Epidermal micromorphology in Dioon: did volcanism constrain Dioon evolution? Bot J Linn Soc 179:236–254

    Article  Google Scholar 

  • Beaumont MA (2005) Adaptation and speciation: what can FST tell us? Trends Ecol Evol 20:435–440

    Article  PubMed  Google Scholar 

  • Cabrera-Toledo D, González-Astorga J, Vovides AP (2008) Heterozygote excess in ancient populations of the critically endangered Dioon caputoi (Zamiaceae, Cycadales) from central Mexico. Bot J Linn Soc 158:436–447

    Article  Google Scholar 

  • Calonje M, Stevenson DW, Stanberg L (2017) The world list of cycads. http://www.cycadlist.org. Accessed 28 May 2017

  • Cascasan AN, Marler TE (2016) Publishing trends for the Cycadales, the most threatened plant group. J Threatened Taxa 8:8575–8582

    Article  Google Scholar 

  • Castellanos-Morales G, Gutiérrez-Guerrero YT, Gámez N, Eguiarte LE (2016) Use of molecular and environmental analyses for integrated in situ and ex situ conservation: the case of the Mexican prairie dog. Biol Conserv 204:284–295

    Article  Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140

    Article  PubMed  PubMed Central  Google Scholar 

  • Chemnick J, Gregory T (2010) Dioon sonorense. The IUCN Red List of Threatened Species. http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T42130A10661262.en. Accessed 28 May 2017

  • Chemnick J, Gregory TJ, Salas Morales S (1997) A revision of Dioon tomasellii (Zamiaceae) from western Mexico, a range extension of D. merolae, and clarification of D. purpusii. Phytologia 83:1–6

    Google Scholar 

  • Cibrián-Jaramillo A, Daly AC, Brenner E, Desalle R, Marler TE (2010) When North and South don’t mix: genetic connectivity of a recently endangered oceanic cycad, Cycas micronesica, in Guam using EST-microsatellites. Mol Ecol 19:2364–2379

    PubMed  Google Scholar 

  • Contreras-Medina R, Ruiz-Jiménez CA, Luna Vega I (2003) Caterpillars of Eumaeus childrenae (Lepidoptera: Lycaenidae) feeding on two species of cycads (Zamiaceae) in the Huasteca region. Mex Rev Biol Trop 51:201–204

    Google Scholar 

  • Donaldson JS (2003) Cycads: status survey and conservation action plan. IUCN, Gland

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • García E (2004) Modificaciones al sistema de clasificación climática de Koppen. UNAM, DF (Mexico)

    Google Scholar 

  • González-Astorga J, Vovides AP, Ferrer MM, Iglesias C (2003) Population genetics of Dioon edule Lindl. (Zamiaceae, Cycadales): biogeographical and evolutionary implications. Bot J Linn Soc 80:457–467

    Article  Google Scholar 

  • González-Astorga J, Vovides AP, Cruz-Angón A, Octavio-Aguilar P, Iglesias C (2005) Allozyme variation in the three extant populations of the narrowly endemic cycad Dioon angustifolium Miq. (Zamiaceae) from North-eastern Mexico. Ann Bot 95:999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Astorga J, Vergara-Silva F, Vovides AP, Nicolalde-Morejón F, Cabrera-Toledo D, Pérez-Farrera MA (2008) Diversity and genetic structure of three species of Dioon Lindl. (Zamiaceae, Cycadales) from the Pacific Seaboard of Mexico. Bot J Linn Soc 94:765–776

    Article  Google Scholar 

  • González-Astorga J, Vovides AP, Cabrera-Toledo D, Nicolalde-Morejón F (2009) Diversity and genetic structure of the endangered cycad Dioon sonorense (Zamiaceae) from Sonora, Mexico: evolutionary and conservation implications. Biochem Syst Ecol 36:891–899

    Article  CAS  Google Scholar 

  • Gregory TJ, Chemnick J (2004) Hypotheses on the relationship between biogeography and speciation in Dioon (Zamiaceae). In: Walters T, Osborne R (eds) Cycad classification: concepts and recommendations. CABI Publishing, Wallingford, pp 137–148

    Chapter  Google Scholar 

  • Gregory TJ, Chemnick J, Salas-Morales S, Vovides AP (2003) A new species in the genus Dioon (Zamiaceae) from north-central Oaxaca, Mexico. Bot J Linn Soc 141:471–476

    Article  Google Scholar 

  • Gutiérrez-Ortega JS, Kajita T, Molina-Freaner FE (2014) Conservation genetics of an endangered cycad, Dioon sonorense (Zamiaceae): implications from variation of chloroplast DNA. Bot Sci 92:441–451

    Article  Google Scholar 

  • Gutiérrez-Ortega JS, Salinas-Rodríguez MM, Martínez JF et al (2018a) The phylogeography of the cycad genus Dioon (Zamiaceae) clarifies its Cenozoic expansion and diversification in the Mexican transition zone. Ann Bot 121:535–548

    Article  PubMed  Google Scholar 

  • Gutiérrez-Ortega JS, Yamamoto T, Vovides AP et al (2018b) Aridification as a driver of biodiversity: a case study for the cycad genus Dioon (Zamiaceae). Ann Bot 121:47–60

    Article  Google Scholar 

  • Halffter G (1984) Las reservas de la biosfera: conservación de la naturaleza para el hombre. Acta Zool Mex 5:4–48

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST-palaeontological statistics, ver. 1.89. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  • IUCN (2010) The IUCN Red List of Threatened Species. October 2010 update. Cycad facts. https://cmsdata.iucn.org/downloads/cycad_factsheet_final.pdf. Accessed 28 Mar 2017

  • IUCN (2018) The IUCN Red List of Threatened Species. Version 2016-3. http://www.iucnredlist.org. Accessed 9 Mar 2018

  • James HE, Forster PI, Lamont RW, Shapcott A (2018) Conservation genetics and demographic analysis of the endangered cycad species Cycas megacarpa and the impacts of past habitat fragmentation. https://doi.org/10.1071/BT17192

    Article  Google Scholar 

  • Keppel G, Lee SW, Hodgskiss PD (2002) Evidence for long isolation among populations of a Pacific cycad: genetic diversity and differentiation in Cycas seemannii A. Br.(Cycadaceae). J Hered 93:133–139

    Article  CAS  PubMed  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Res 15:1179–1191

    Article  CAS  Google Scholar 

  • Liu J, Zhou W, Gong X (2015) Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China. Front Plant Sci 6

  • Mace GM (2014) Whose conservation? Science 345:1558–1560

    Article  CAS  PubMed  Google Scholar 

  • Manoukis NC (2007) FORMATOMATIC: a program for converting diploid allelic data between common formats for population genetic analysis. Mol Ecol Notes 7:592–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Marler PN, Marler TE (2015) An assessment of Red List data for the Cycadales. Trop Conserv Sci 8:1114–1125

    Article  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Farrera MA, Vovides AP (2004) Spatial distribution, population structure, and fecundity of Ceratozamia matudai Lundell (Zamiaceae) in El Triunfo Biosphere Reserve, Chiapas, Mexico. Bot Rev 70:299–311

    Article  Google Scholar 

  • Pérez-Farrera MA, Vovides AP, Avendaño S (2014) Morphology and leaflet anatomy of the Ceratozamia norstogii (Zamiaceae, Cycadales) species complex in Mexico with comments on relationships and speciation. Int J Plant Sci 175(1):110–121

    Article  Google Scholar 

  • Pérez-Farrera MA, Vovides AP, Ruiz-Castillejos C, Galicia S, Cibrián-Jaramillo A, López S (2016) Anatomy and morphology suggest a hybrid origin of Zamia katzeriana (Zamiaceae). Phytotaxa 270:161–181

    Article  Google Scholar 

  • Peters JL, Lavretsky P, DaCosta JM, Bielefeld RR, Feddersen JC, Sorenson MD (2016) Population genomic data delineate conservation units in mottled ducks (Anas fulvigula). Biol Conserv 203:272–281

    Article  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Pritchard JK, Wen X, Falush D (2010) Documentation for structure software: Version 2.3. University of Chicago, Chicago

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Ren J, Chen L, Sun D et al (2013) SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol Biol 13:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rzedowski J, Huerta L (1978) Vegetación de México. Limusa, Mexico City

    Google Scholar 

  • Sabato S, De Luca P (1985) Evolutionary trends in Dion (Zamiaceae). Am J Bot 72:1353–1363

    Article  Google Scholar 

  • Salas-Morales SH, Chemnick J, Gregory TJ (2016) A new cycad species in the genus Dioon (Zamiaceae) from the Mixteca region of Oaxaca, Mexico. Cact Succ J 88:35–42

    Article  Google Scholar 

  • Stockwell CA, Heilveil JS, Purcell K (2013) Estimating divergence time for two evolutionarily significant units of a protected fish species. Conserv Genet 14:215–222

    Article  Google Scholar 

  • Suyama Y, Matsuki Y (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci Rep. https://doi.org/10.1038/srep16963

    Article  PubMed  PubMed Central  Google Scholar 

  • Vovides AP, Galicia S (2016) G-fibers and Florin ring-like structures in Dioon (Zamiaceae). Bot Sci 94:263–268

    Article  Google Scholar 

  • Vovides AP, Pérez-Farrera MA, Iglesias C (2010) Cycad propagation by rural nurseries in Mexico as an alternative conservation strategy: 20 years on. Kew Bull 65:603–611

    Article  Google Scholar 

  • Vovides AP, Clugston JAR, Gutiérrez-Ortega JS, Pérez-Farrera MA, Sánchez-Tinoco MY, Galicia S (2018) Epidermal morphology and leaflet anatomy of Dioon (Zamiaceae) with comments on climate and environment. Flora 239:20–44

    Article  Google Scholar 

  • Whitelock LM (2002) The cycads. Timber Press, Portland

    Google Scholar 

  • Xiao L, Gong X, Hao G, Ge X, Tian B, Zheng S (2005) Comparison of the genetic diversity in two species of cycads. Aust J Bot 53:219–223

    Article  Google Scholar 

  • Xiong M, Jin L (1999) Comparison of the power and accuracy of biallelic and microsatellite markers in population-based gene-mapping methods. Am J Hum Genet 64:629–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SL, Meerow AW (1996) The Cycas pectinata (Cycadaceae) complex: genetic structure and gene flow. Int J Plant Sci 157:468–483

    Article  Google Scholar 

  • Zhan QQ, Wang JF, Gong X, Peng H (2011) Patterns of chloroplast DNA variation in Cycas debaoensis (Cycadaceae): conservation implications. Conserv Genet 12:959–970

    Article  CAS  Google Scholar 

  • Zheng Y, Liu J, Feng X, Gong X (2017) The distribution, diversity, and conservation status of Cycas in China. Ecol Evol 7:3212–3224

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Takuro Ito and Sonia Galicia for technical support. We are very grateful for the revision of two anonymous reviewers who gave critical comments that helped improve the manuscript. M.A.P.F. thanks Christopher Davidson and Sharon Christoph for partial financial support. Field specimens of D. sonorense were collected under permits No. SGPA/DGVS/12198 and SGPA/DGVS/08722 from SEMARNAT, Mexico.

Funding

This study was funded by the Japan Society for the Promotion of Science (Grant in aid No. 16J11945 to J.S.G.O.) and Consejo Nacional de Ciencia y Tecnología (Grant CB-2011-01-169468 to A.P.V.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Said Gutiérrez-Ortega or Tadashi Kajita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12218 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Ortega, J.S., Jiménez-Cedillo, K., Pérez-Farrera, M.A. et al. Considering evolutionary processes in cycad conservation: identification of evolutionarily significant units within Dioon sonorense (Zamiaceae) in northwestern Mexico. Conserv Genet 19, 1069–1081 (2018). https://doi.org/10.1007/s10592-018-1079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-018-1079-2

Keywords

Navigation