Skip to main content
Log in

Algorithms for generalized potential games with mixed-integer variables

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider generalized potential games, that constitute a fundamental subclass of generalized Nash equilibrium problems. We propose different methods to compute solutions of generalized potential games with mixed-integer variables, i.e., games in which some variables are continuous while the others are discrete. We investigate which types of equilibria of the game can be computed by minimizing a potential function over the common feasible set. In particular, for a wide class of generalized potential games, we characterize those equilibria that can be computed by minimizing potential functions as Pareto solutions of a particular multi-objective problem, and we show how different potential functions can be used to select equilibria. We propose a new Gauss–Southwell algorithm to compute approximate equilibria of any generalized potential game with mixed-integer variables. We show that this method converges in a finite number of steps and we also give an upper bound on this number of steps. Moreover, we make a thorough analysis on the behaviour of approximate equilibria with respect to exact ones. Finally, we make many numerical experiments to show the viability of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aussel, D., Sagratella, S.: Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality. Math. Meth. Oper. Res. 85(1), 3–18 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Akademie-Verlag, Berlin (1982)

    Book  MATH  Google Scholar 

  3. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tighteningtechniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertsekas, D., Tsitziklis, J.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont (1997)

    Google Scholar 

  6. Bigi, G., Passacantando, M.: Gap functions for quasi-equilibria. J. Glob. Optim. 66(4), 791–810 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buzzi, S., Zappone, A.: Potential games for energy-efficient resource allocation in multipoint-to-multipoint CDMA wireless data networks. Phys. Commun. 7, 1–13 (2013)

    Article  Google Scholar 

  8. Dreves, A.: Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets. Math. Meth. Oper. Res. 80(2), 139–159 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dreves, A.: Computing all solutions of linear generalized Nash equilibrium problems. Math. Meth. Oper. Res. (2016). doi:10.1007/s00186-016-0562-0

    MATH  MathSciNet  Google Scholar 

  10. Dreves, A.: Improved error bound and a hybrid method for generalized Nash equilibrium problems. Comput. Optim. Appl. 65(2), 431–448 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dreves, A., Facchinei, F., Fischer, A., Herrich, M.: A new error bound result for generalized Nash equilibrium problems and its algorithmic application. Comput. Optim. Appl. 59(1–2), 63–84 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dreves, A., Facchinei, F., Kanzow, C., Sagratella, S.: On the solution of the KKT conditions of generalized Nash equilibrium problems. SIAM J. Optim. 21(3), 1082–1108 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dreves, A., Kanzow, C.: Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems. Comput. Optim. Appl. 50(1), 23–48 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dreves, A., Kanzow, C., Stein, O.: Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems. J. Glob. Optim. 53(4), 587–614 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dreves, A., Sudermann-Merx, N.: Solving linear generalized Nash equilibrium problems numerically. Optim. Methods Softw. 31(5), 1036–1063 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  16. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175(1), 177–211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Facchinei, F., Kanzow, C., Sagratella, S.: Solving quasi-variational inequalities via their KKT conditions. Math. Program. 144(1–2), 369–412 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Facchinei, F., Lampariello, L.: Partial penalization for the solution of generalized Nash equilibrium problems. J. Glob. Optim. 50(1), 39–57 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Facchinei, F., Lampariello, L., Sagratella, S.: Recent advancements in the numerical solution of generalized Nash equilibrium problems. Quaderni di Matematica - Volume in ricordo di Marco D’Apuzzo 27, 137–174 (2012)

    MathSciNet  Google Scholar 

  20. Facchinei, F., Piccialli, V., Sciandrone, M.: Decomposition algorithms for generalized potential games. Comput. Optim. Appl. 50(2), 237–262 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Facchinei, F., Sagratella, S.: On the computation of all solutions of jointly convex generalized Nash equilibrium problems. Optim. Lett. 5(3), 531–547 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Izmailov, A.F., Solodov, M.V.: On error bounds and Newton-type methods for generalized Nash equilibrium problems. Comput. Optim. Appl. 59(1–2), 201–218 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Moragrega, A., Closas, P., Ibars, C.: Potential game for energy-efficient RSS-based positioning in wireless sensor networks. IEEE J. Sel. Area Commun. 33(7), 1394–1406 (2015)

    Article  Google Scholar 

  25. Nabetani, K., Tseng, P., Fukushima, M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. 48(3), 423–452 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nowak, I.: Relaxation and decomposition methods for mixed integer nonlinear programming, vol. 152. Springer, New York (2006)

    Google Scholar 

  27. Pang, J.S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2, 21–56 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rockafellar, R., Wets, J.: Variational Analysis. Springer, New York (1998)

    Book  MATH  Google Scholar 

  29. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33, 520–534 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sagratella, S.: Computing all solutions of Nash equilibrium problems with discrete strategy sets. SIAM J. Optim. 26(4), 2190–2218 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sagratella, S.: Computing equilibria of Cournot oligopoly models with mixed-integer quantities. Math. Meth. Oper. Res. (2017). doi:10.1007/s00186-017-0599-8

    MathSciNet  Google Scholar 

  32. Sandholm, W.H.: Potential games with continuous player sets. J. Econ. Theory 97(1), 81–108 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Scutari, G., Barbarossa, S., Palomar, D.P.: Potential games: a framework for vector power control problems with coupled constraints. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 4, pp. IV–IV. IEEE (2006)

  34. Stein, O., Sudermann-Merx, N.: On smoothness properties of optimal value functions at the boundary of their domain under complete convexity. Math. Meth. Oper. Res. 79(3), 327 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  35. Stein, O., Sudermann-Merx, N.: The cone condition and nonsmoothness in linear generalized Nash games. J. Optim. Theory Appl. 2(170), 687–709 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tawarmalani, M., Sahinidis, N.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer, Berlin (2002)

    MATH  Google Scholar 

  37. Tirole, J.: The Theory of Industrial Organization. MIT Press, Cambridge (1988)

    Google Scholar 

  38. Zhu, Q.: A lagrangian approach to constrained potential games: Theory and examples. In: Decision and Control, 2008. CDC 2008. 47th IEEE Conference on Decision and Control, pp. 2420–2425. IEEE (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Sagratella.

Additional information

The work of the author has been partially supported by Avvio alla Ricerca 2015 Sapienza University of Rome, under Grant 488.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagratella, S. Algorithms for generalized potential games with mixed-integer variables. Comput Optim Appl 68, 689–717 (2017). https://doi.org/10.1007/s10589-017-9927-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9927-4

Keywords

Navigation