Skip to main content
Log in

Introgression mapping in the grasses

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The unique properties of Lolium/Festuca hybrids and their derivatives provide an ideal system for intergeneric introgression. At IGER a focus on the Lolium perenne/Festuca pratensis system is being exploited to elucidate genome organization in the grasses, determination of the genetic control of target traits and the isolation of markers for marker-assisted selection in breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstead IP, Harper JA, Turner LB et al. (2005) Introgression of crown rust (Puccinia coronata) resistance from meadow fescue (Festuca pratensis) into Italian ryegrass (Lolium multiflorum); genetic mapping and identification of associated molecular markers. Plant Pathol 55: 62–67.

    Article  CAS  Google Scholar 

  • Armstead I, Donnison I, Aubry S et al. (2006a) Cross-species identification of Mendel’s I locus. Science (in press).

  • Armstead I, Donnison I, Aubry S et al. (2006b) From crop to model to crop: identifying the genetic basis of the stay-green mutation in the Lolium/Festuca forage and amenity grasses. New Phytologist (in press).

  • Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99: 445–452.

    Article  CAS  Google Scholar 

  • Chen JM, Gustafson JP (1995) Physical mapping of restriction fragment length polymorphisms (RFLPs) in homoeologous group 7 chromosomes of wheat by in situ hybridisation. Heredity 75: 225–233.

    CAS  Google Scholar 

  • Curtis CA, Lukaszewski AJ (1991) Genetic linkage between C-bands and storage protein genes in chromosome 1B of tetraploid wheat. Theor Appl Genet 81: 245–252.

    Article  Google Scholar 

  • Donnison I, O’Sullivan D, Thomas A et al. (2005) Construction of a Festuca pratensis BAC library for map based cloning in Festulolium substitution lines. Theor Appl Genet 110: 846–851.

    Article  PubMed  CAS  Google Scholar 

  • Dvořák J, Chen K-C (1984) Distribution of non-structural variation between wheat cultivars along chromosome arm 6B P : evidence from the linkage map and physical map of the arm. Genetics 106: 325–333.

    Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32: 3546–3565.

    Article  PubMed  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996a) Identification and high density mapping of gene rich regions in chromosome group 5 of wheat. Genetics 143: 1001–1012.

    PubMed  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996b) Identification and high-density mapping of the gene-rich regions in chromosome group 1 of wheat. Genetics 144: 1883–1891.

    PubMed  CAS  Google Scholar 

  • Hayward M, Forster JW, Jones JG, Dolstra O, Evans C (1998) Genetic analysis of Lolium. I. Identification of linkage groups and the establishment of a genetic map. Plant Breeding 117: 451–455.

    Article  Google Scholar 

  • Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var glaucescens into Lolium multiflorum. Theor Appl Genet 110: 579–587.

    Article  PubMed  CAS  Google Scholar 

  • Jauhar PP (1975) Chromosome relationships between Lolium and Festuca (Graminea). Chromosoma 52: 103–121.

    Article  Google Scholar 

  • King IP, Morgan WG, Armstead IP et al. (1998) Introgression mapping in the grasses I. Introgression of Festuca pratensis chromosomes and chromosome segments into Lolium perenne. Heredity 81: 462–467.

    Article  CAS  Google Scholar 

  • King IP, Morgan WG, Harper JA, Thomas HM (1999) Introgression mapping in the grasses. II. Meiotic analysis of the Lolium perenne/Festuca pratensis triploid hybrid. Heredity 82: 107–112.

    Article  Google Scholar 

  • King J, Roberts LA, Kearsey MJ et al. (2002a) A demonstration of a 1:1 correspondence between chiasma frequency and recombination using a Lolium perenne/Festuca pratensis substitution line. Genetics 161: 307–314.

    PubMed  CAS  Google Scholar 

  • King J, Armstead IP, Donnison IS et al. (2002b) Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis. Genetics 161: 315–324.

    PubMed  CAS  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154: 397–412.

    PubMed  Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics 8: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Lewis EJ (1966) The production and manipulation of new breeding material in Lolium–Festuca. In Hill AGG, ed., Proceedings, Tenth International Grassland Congress, Valtioneuvoston Kirjapaino, Helsinki, pp. 688–693.

    Google Scholar 

  • Lawrence GJ, Appels R (1986) Mapping the nucleolar organiser region, seed protein loci and isozyme loci on chromosome 1R in rye. Theor Appl Genet 71: 742–749.

    Article  CAS  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of 4 sites of 5s rRNA sequences and one site of the α-amylase-2 gene in barley (Hordeum vulgare). Genome 36: 517–523.

    CAS  PubMed  Google Scholar 

  • Linde-Laursen I (1979) Giemsa C-banding of barley chromosomes III. Segregation and linkage of C bands on chromosomes 3, 6 and 7. Hereditas 91: 73–77.

    Article  Google Scholar 

  • Moore BJ, Donnison IS, Harper JA et al. (2005) Molecular tagging of a senescence gene by introgression mapping of a stay-green mutation from Festuca pratensis. New Phytol 165: 801–806.

    Article  PubMed  CAS  Google Scholar 

  • Payne PI, Holt LM, Hutchinson J, Bennett MD (1984) Development and characterisation of a line of bread wheat, Triticum aestivum, which lacks the short arm satellite of chromosome 1B and the Gli-B1 locus. Theor Appl Genet 68: 327–334.

    Article  Google Scholar 

  • Pedersen C, Giese H, Linde-Lauresen I (1995) Towards an integration of the physical and the genetic chromosome map of barley by in situ hybridisation. Hereditas 123: 77–88.

    Article  CAS  Google Scholar 

  • Roca M, James C, Pružinská A, Hortensteiner S, Thomas H, Ougham H (2004) Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum. Phytochemistry 65: 1231–1238.

    Article  PubMed  CAS  Google Scholar 

  • Rodoni S, Muhlecker W, Anderl M et al. (1997) Chlorophyll breakdown in senescent chloroplasts-cleavage of pheophorbide a in two enzymic steps. Plant Physiol 115: 669–676.

    Article  PubMed  CAS  Google Scholar 

  • Snape JW, Flavell RB, O’Dell M, Hughes WG, Payne PI (1985) Intrachromosomal mapping of the nucleolar organiser region relative to three marker loci on chromosome 1B of wheat (Triticum aestivum). Theor Appl Genet 69: 263–270.

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package. JOINMAP. Plant J 3: 739–744.

    Article  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, deVicente MC, Bonierbale MW (1992) High density linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.

    PubMed  CAS  Google Scholar 

  • Thomas H (1987) sid: A Mendelian locus controlling thylakoid membrane disassembly in senescing leaves of Festuca pratensis. Theor Appl Genet 73: 551–555.

    Article  Google Scholar 

  • Thomas H, Evans C, Thomas HM et al. (1997) Introgression, tagging and expression of a leaf senescence gene in Festulolium. New Phytol 137: 29–34.

    Article  Google Scholar 

  • Thomas H, Ougham HJ, Hortensteiner S (2001) Recent advances in the cell biology of chlorophyll catabolism. Adv Bot Res 35: 1–52.

    Article  CAS  Google Scholar 

  • Vicentini F, Hortensteiner S, Schellenberg M, Thomas H, Matile P (1995) Chlorophyll breakdown in senescent leaves: identification of the biochemical lesion in a stay-green genotype of Festuca pratensis. New Phytol 129: 247–252.

    Article  CAS  Google Scholar 

  • Wang ML, Atkinson MD, Chinoy CN, Devos KM, Gale MD (1992) Comparative RFLP-based genetic maps of barley chromosome 5 (1H) and rye chromosome 1R. Theor Appl Genet 84: 339–344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, J., Armstead, I.P., Donnison, I.S. et al. Introgression mapping in the grasses. Chromosome Res 15, 105–113 (2007). https://doi.org/10.1007/s10577-006-1103-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1103-0

Key words

Navigation