Skip to main content
Log in

Development of mechanically durable hydrophobic lanolin/silicone rubber coating on viscose fibers

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We report on a simple technique for the production of mechanically durable water-repellent layer on viscose fibers via spray-coating of a lanolin-silicon rubber solution in petroleum ether. Depending on the silicon rubber solution concentration, it was achievable to gain surfaces with hierarchical morphology. Extracted lanolin was admixed with a mixture of a room temperature vulcanizing silicon rubber and petroleum ether to afford the silicon rubber-lanolin formulation, which was applied successfully onto viscose fabrics employing spray-coat procedure. The surface characteristics of the spray-coated viscose fibers were studied by scanning electron microscope, energy dispersive X-ray analysis, and static water contact and sliding angle measurements. The alteration in the chemical composition of viscose-treated fabric was studied using Fourier-transform infrared spectroscopy. The wetting behavior was found to be a function of silicon rubber concentration in ether solution affording coatings with high static water contact angle and low sliding angle values. The treated viscose fabric exhibited excellent ultraviolet protection and enhanced hydrophobicity without adverse effect on its inherent physico-mechanical properties. The comfort characteristics of spray-coated viscose fibers were also evaluated by studying their air-permeability and stiffness. The results displayed durable water-repellent properties of the treated viscose, introducing a good opportunity for a large-scale manufacture of water-repellent textiles for a diversity of industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas R, Khereby M, Sadik W, El Demerdash A (2015) Fabrication of durable and cost effective superhydrophobic cotton textiles via simple one step process. Cellulose 22:887–896

    CAS  Google Scholar 

  • Abdelmoez S, Abd El Azeem R, Nada A, Khattab A (2016) Electrospun PDA-CA nanofibers toward hydrophobic coatings. Zeitschrift für Anorganische und Allgemeine Chemie 642:219–221

    CAS  Google Scholar 

  • Abdelrahman MS, Khattab TA (2019) Development of one-step water-repellent and flame-retardant finishes for cotton. ChemistrySelect 4(13):3811–3816

    CAS  Google Scholar 

  • Aboutalebi S, Jalili R, Esrafilzadeh D, Salari M, Gholamvand Z, Yamini S, Konstantinov K et al (2014) High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 8:2456–2466

    CAS  PubMed  Google Scholar 

  • Aziz F, Ismail A (2015) Spray coating methods for polymer solar cells fabrication: a review. Mater Sci Semicond Process 39:416–425

    CAS  Google Scholar 

  • Bian P, Dai Y, Qian X, Chen W, Yu H, Li J, Shen J (2014) A process of converting cellulosic fibers to a superhydrophobic fiber product by internal and surface applications of calcium carbonate in combination with bio-wax post-treatment. RSC Adv 4:52680–52685

    CAS  Google Scholar 

  • Cao G, Zhang W, Jia Z, Liu F, Yang H, Yu Q, Wang Y, Di X, Wang C, Ho S (2017) Dually prewetted underwater superoleophobic and under oil superhydrophobic fabric for successive separation of light oil/water/heavy oil three-phase mixtures. ACS Appl Mater Interfaces 9:36368–36376

    CAS  PubMed  Google Scholar 

  • Chauhan P, Kumar A, Bhushan B (2019) Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. J Colloid Interface Sci 535:66–74

    CAS  PubMed  Google Scholar 

  • Chen X, Guan Y, Wang L, Sanbhal N, Zhao F, Zou Q, Zhang Q (2016) Antimicrobial textiles for sutures, implants, and scaffolds. In: Sun G (ed) Antimicrobial textiles. Woodhead Publishing, Sawston, pp 263–285

    Google Scholar 

  • Cheng Q, Liu M, Li Y, Zhu J, Du A, Zeng B (2018) Biobased super-hydrophobic coating on cotton fabric fabricated by spray-coating for efficient oil/water separation. Polym Test 66:41–47

    CAS  Google Scholar 

  • Edman B, Möller H (1989) Testing a purified lanolin preparation by a randomized procedure. Contact Dermat 20:287–290

    CAS  Google Scholar 

  • Flockhart I, Steel I, Kitchen G (1998) Nanoemulsions derived from lanolin show promising drug delivery properties. J Pharm Pharmacol 50:141-141

    Google Scholar 

  • Girotto C, Rand B, Genoe J, Heremans P (2009) Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells. Sol Energy Mater Sol Cells 93:454–458

    CAS  Google Scholar 

  • Heredia-Guerrero A, Ceseracciu L, Guzman-Puyol S, Paul Uttam, Alfaro-Pulido A, Grande Chiara, Vezzulli L et al (2018) Antimicrobial, antioxidant, and waterproof RTV silicone-ethyl cellulose composites containing clove essential oil. Carbohyd Polym 192:150–158

    CAS  Google Scholar 

  • Hoefnagels H, Wu D, With G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23:13158–13163

    CAS  PubMed  Google Scholar 

  • Huang K, Yeh J, Shun T, Chen S (2004) Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater 6:74–78

    CAS  Google Scholar 

  • Holme I (2007) Innovative technologies for high performance textiles. Color Technol 123:59–73

    CAS  Google Scholar 

  • Khalil-Abad M, Yazdanshenas M (2010) Superhydrophobic antibacterial cotton textiles. J Colloid Interface Sci 351:293–298

    Google Scholar 

  • Khattab TA, Helmy H (2019) Industrial and filtration textiles. In: Paul R (ed) High performance technical textiles. Wiley, Hoboken, pp 215–237

    Google Scholar 

  • Khattab T, Elnagdi M, Haggag K, Abdelrahman A, Abdelmoez S (2017) Green synthesis, printing performance, and antibacterial activity of disperse dyes incorporating arylazopyrazolopyrimidines. AATCC J Res 4:1–8

    CAS  Google Scholar 

  • Khattab T, Abou-Yousef H, Kamel S (2018a) Photoluminescent spray-coated paper sheet: write-in-the-dark. Carbohyd Polym 200:154–161

    CAS  Google Scholar 

  • Khattab T, Rehan M, Hamouda T (2018b) Smart textile framework: photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment. Carbohyd Polym 195:143–152

    CAS  Google Scholar 

  • Khattab T, Rehan M, Hamdy Y, Shaheen T (2018c) Facile development of photoluminescent textile fabric via spray coating of Eu(II)-doped strontium aluminate. Ind Eng Chem Res 57:11483–11492

    CAS  Google Scholar 

  • Khattab TA, Fouda MM, Abdelrahman MS, Othman SI, Bin-Jumah M, Alqaraawi MA, Al Fassam H, Allam AA (2019) Development of illuminant glow-in-the-dark cotton fabric coated by luminescent composite with antimicrobial activity and ultraviolet protection. J Fluoresc 29(3):703–710

    CAS  PubMed  Google Scholar 

  • Kumar V, Lee D, Lee J (2016) Studies of RTV silicone rubber nanocomposites based on graphitic nanofillers. Polym Testing 56:369–378

    CAS  Google Scholar 

  • Labouriau A, Cady C, Gill J, Taylor D, Zocco A, Stull J, Henderson K, Wrobleski D (2015a) The effects of gamma irradiation on RTV polysiloxane foams. Polym Degrad Stab 117:75–83

    CAS  Google Scholar 

  • Labouriau A, Robison T, Meincke L, Wrobleski D, Taylor D, Gill J (2015b) Aging mechanisms in RTV polysiloxane foams. Polym Degrad Stab 121:60–68

    CAS  Google Scholar 

  • Liu K-F, Li P-P, Zhang Y-P, Liu P-F, Cui C-X, Wang J-C, Li X-J, Qu L-B (2019) Laboratory filter paper from superhydrophobic to quasi-superamphiphobicity: facile fabrication, simplified patterning and smart application. Cellulose 26(6):3859–3872

    CAS  Google Scholar 

  • Ma Y, Cao C, Hou C (2018) Preparation of super-hydrophobic cotton fabric with crosslinkable fluoropolymer. In: Zhao P, Ouyang Y, Xu M, Yang L, Ren Y (eds) Applied sciences in graphic communication and packaging. Springer, Singapore, pp 955–962

    Google Scholar 

  • Madara D, Namango S (2014) Wool grease recovery from scouring effluent at textile mill. J Agric Pure Appl Sci Technol 10:1–9

    Google Scholar 

  • Moridi A, Gangaraj S, Guagliano M, Dao M (2014) Cold spray coating: review of material systems and future perspectives. Surf Eng 30:369–395

    CAS  Google Scholar 

  • Nouri NM, Saadat-Bakhsh M (2017) Fabrication method of large-scale and mechanically durable superhydrophobic silicon rubber/aerogel coating on fibrous substrates. J Coat Technol Res 14(2):477–488

    CAS  Google Scholar 

  • Ogihara H, Okagaki J, Saji T (2011) Facile fabrication of colored superhydrophobic coatings by spraying a pigment nanoparticle suspension. Langmuir 27:9069–9072

    CAS  PubMed  Google Scholar 

  • Ogihara H, Xie J, Okagaki J, Saji T (2012) Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 28:4605–4608

    CAS  PubMed  Google Scholar 

  • Ogihara H, Xie J, Saji T (2013) Factors determining wettability of superhydrophobic paper prepared by spraying nanoparticle suspensions. Colloids Surf A 434:35–41

    CAS  Google Scholar 

  • Oulton P (1995) Fire-retardant textiles. Chemistry of the textiles industry. In: Carr CM (ed) Blackie academic and professional, chapter 3. Springer, Singapore, pp 102–124

    Google Scholar 

  • Pan G, Xiao X, Yu N, Ye Z (2018) Fabrication of superhydrophobic coatings on cotton fabric using ultrasound-assisted in situ growth method. Prog Org Coat 125:463–471

    CAS  Google Scholar 

  • Qiang S, Chen K, Yin Y, Wang C (2017) Robust UV-cured superhydrophobic cotton fabric surfaces with self-healing ability. Mater Des 116:395–402

    CAS  Google Scholar 

  • Rehan M, Khattab T, Barohum A, Gätjen L, Wilken R (2018) Development of Ag/AgX (X = Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohyd Polym 197:227–236

    CAS  Google Scholar 

  • Sabri F, King D, Lokesh A, Hatch C, Duran R (2015) Thermal, optical, and electrical characterization of thin film coated RTV 655 bilayer system. J Appl Polym Sci 132:41396–41407

    Google Scholar 

  • Seyedmehdi SA, Zhang H, Zhu J (2012) Superhydrophobic RTV silicone rubber insulator coatings. Appl Surf Sci 258(7):2972–2976

    CAS  Google Scholar 

  • Si Y, Guo Z (2016) Eco-friendly functionalized superhydrophobic recycled paper with enhanced flame-retardancy. J Colloid Interface Sci 477:74–82

    CAS  PubMed  Google Scholar 

  • Wang L, Zhang X, Li B, Sun P, Yang J, Xu H, Liu Y (2011) Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl Mater Interfaces 3:1277–1281

    CAS  PubMed  Google Scholar 

  • Xu F, Liu Y, Lin F, Mondal B, Lyons A (2013) Superhydrophobic TiO2–polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. ACS Appl Mater Interfaces 5:8915–8924

    CAS  PubMed  Google Scholar 

  • Xue C, Jia S, Zhang J, Tian L, Chen H, Wang M (2008) Preparation of superhydrophobic surfaces on cotton textiles. Sci Technol Adv Mater 9:035008

    PubMed  PubMed Central  Google Scholar 

  • Xue C, Ji P, Zhang P, Li Y, Jia S (2013) Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation. Appl Surf Sci 284:464–471

    CAS  Google Scholar 

  • Xue C, Li M, Guo X, Li X, An Q, Jia S (2017) Fabrication of superhydrophobic textiles with high water pressure resistance. Surf Coat Technol 310:134–142

    CAS  Google Scholar 

  • Xue C, Fan Q, Guo X, An Q, Jia S (2019) Fabrication of superhydrophobic cotton fabrics by grafting of POSS-based polymers on fibers. Appl Surf Sci 465:241–248

    CAS  Google Scholar 

  • Yao L, Hammond G (2006) Isolation and melting properties of branched-chain esters from lanolin. J Am Oil Chem Soc 83:547–552

    CAS  Google Scholar 

  • Zhang M, Wang C, Wang S, Li J (2013) Fabrication of superhydrophobic cotton textiles for water–oil separation based on drop-coating route. Carbohyd Polym 97:59–64

    CAS  Google Scholar 

  • Zhang Y-P, Yang J-H, Li L-L, Cui C-X, Li Y, Liu S-Q, Zhou X-M, Qu L-B (2019a) Facile fabrication of superhydrophobic copper-foam and electrospinning polystyrene fiber for combinational oil-water separation. Polymers 11(1):97

    PubMed Central  Google Scholar 

  • Zhang Y-P, Li P-P, Liu P-F, Zhang W-Q, Wang J-C, Cui C-X, Li X-J, Qu L-B (2019b) Fast and simple fabrication of superhydrophobic coating by polymer induced phase separation. Nanomaterials 9(3):411

    PubMed Central  Google Scholar 

  • Zhu J (2018) A novel fabrication of superhydrophobic surfaces on aluminum substrate. Appl Surf Sci 447:363–367

    CAS  Google Scholar 

  • Zimmermann J, Reifler F, Fortunato A, Gerhardt L, Seeger S (2008) A simple, one-step approach to durable and robust superhydrophobic textiles. Adv Func Mater 18:3662–3669

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the National Research Centre of Egypt for the financial support through Project Number 11070204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosam El-Sayed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattab, T.A., Mowafi, S. & El-Sayed, H. Development of mechanically durable hydrophobic lanolin/silicone rubber coating on viscose fibers. Cellulose 26, 9361–9371 (2019). https://doi.org/10.1007/s10570-019-02721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02721-5

Keywords

Navigation