Skip to main content
Log in

A kinetic study on the hydrolysis of corncob residues to levulinic acid in the FeCl3–NaCl system

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Levulinic acid (LA) production from corncob acid hydrolysis residues (CAHR) using FeCl3 as Lewis acid catalyst in green solutions of salt was investigated. The reaction kinetic relationships were determined in the temperature range of 160–180 °C, with FeCl3 concentrations of 0.12–0.36 M, and a reaction time of 0–60 min. The maximum LA concentration of 59.0 mol% (24.5 g/L) was achieved at 170 °C in a 30% NaCl solution containing 0.24 M FeCl3. A pseudo first-order kinetic model was proposed to describe the cellulose deconstruction to LA. The model agreed perfectly with the evolution in the concentrations of the major compounds such as glucose, 5-hydroxymethylfurfural and LA during the CAHR hydrolysis. The kinetic model developed for CAHR was in good agreement with that previously developed for other lignocellulosic systems. Based on our kinetic model and reaction system, the LA yield is increased at the lower end of the temperature range with the higher acid concentrations. The results indicated that the concentrated seawater after desalination could be a green solvent in the biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554

    Article  CAS  Google Scholar 

  • Bozell JJ, Moens L, Elliott D, Wang Y, Neuenscwander G, Fitzpatrick S, Bilski R, Jarnefeld J (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28(3):227–239

    Article  Google Scholar 

  • Cai CM, Nagane N, Kumar R, Wyman CE (2014) Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chem 16(8):3819–3829

    Article  CAS  Google Scholar 

  • Deng L, Chang C, An R, Qi X, Xu G (2017) Metal sulfates-catalyzed butanolysis of cellulose: butyl levulinate production and optimization. Cellulose 24(12):5403–5415. https://doi.org/10.1007/s10570-017-1530-4

    Article  CAS  Google Scholar 

  • Ding D, Xi J, Wang J, Liu X, Lu G, Wang Y (2015) Production of methyl levulinate from cellulose: selectivity and mechanism study. Green Chem 17(7):4037–4044

    Article  CAS  Google Scholar 

  • Dussan K, Girisuta B, Haverty D, Leahy J, Hayes M (2013) Kinetics of levulinic acid and furfural production from Miscanthus × giganteus. Bioresour Technol 149:216–224

    Article  CAS  PubMed  Google Scholar 

  • Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8:701–709

    Article  CAS  Google Scholar 

  • Girisuta B, Janssen L, Heeres H (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46(6):1696–1708

    Article  CAS  Google Scholar 

  • Girisuta B, Dussan K, Haverty D, Leahy J, Hayes M (2013) A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem Eng J 217:61–70

    Article  CAS  Google Scholar 

  • Guo Y, Li K, Yu X, Clark JH (2008) Mesoporous H3PW12O40-silica composite: efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid. Appl Catal B 81(3):182–191

    Article  CAS  Google Scholar 

  • Guo Z, Ling Z, Wang C, Zhang X, Xu F (2018) Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue. Bioresour Technol 265:334–339

    Article  CAS  Google Scholar 

  • Horvat J, Klaić B, Metelko B, Šunjić V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114

    Article  CAS  Google Scholar 

  • Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals. Green Chem 10(2):238–242

    Article  Google Scholar 

  • Jiang Y, Yang L, Bohn CM, Li G, Han D, Mosier NS, Miller JT, Kenttämaa HI, Abu-Omar MM (2015) Speciation and kinetic study of iron promoted sugar conversion to 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Org Chem Front 2(10):1388–1396

    Article  CAS  Google Scholar 

  • Jing S, Cao X, Zhong L, Peng X, Zhang X, Wang S, Sun R (2016) In situ carbonic acid from CO2: a green acid for highly effective conversion of cellulose in the presence of Lewis acid. ACS Sustain Chem Eng 4(8):4146–4155

    Article  CAS  Google Scholar 

  • Kalyani DC, Fakin T, Horn SJ, Tschentscher R (2017) Valorisation of woody biomass by combining enzymatic saccharification and pyrolysis. Green Chem 19:3302–3312

    Article  CAS  Google Scholar 

  • Li J, Jiang Z, Hu L, Hu C (2014) Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system. ChemSusChem 7(9):2482–2488

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Lin X, Yue J, Li X, Fang X, Zhu M, Lin J, Qu Y, Xiao L (2010) High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour Technol 101(13):4952–4958

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Lu H, Hu R, Shupe A, Lin L, Liang B (2012) A sustainable woody biomass biorefinery. Biotechnol Adv 30(4):785–810

    Article  CAS  PubMed  Google Scholar 

  • Ramli NAS, Amin NAS (2016) Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst. Chem Eng J 283:150–159

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL, Golden

    Google Scholar 

  • Wang C, Lyu G, Yang G, Chen J, Jiang W (2014) Characterization and hydrothermal conversion of lignin produced from corncob acid hydrolysis residue. BioResources 9(3):4596–4607

    Google Scholar 

  • Wang C, Zhang L, Zhou T, Chen J, Xu F (2017a) Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of carbohydrates and corncob acid hydrolysis residues to 5-hydroxymethylfurfural. Sci Rep 7:40908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Ye J, Zhou M, Liu P, Liang X, Xu J, Jiang J (2017b) Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent. Cellulose 24(3):1383–1394

    Article  CAS  Google Scholar 

  • Wang C, Zhang Q, Chen Y, Zhang X, Xu F (2018a) Highly efficient conversion of xylose residues to levulinic acid over FeCl3 catalyst in green salt solutions. ACS Sustain Chem Eng 6(3):3154–3161

    Article  CAS  Google Scholar 

  • Wang C, Zhang Q, You T, Wang B, Dai H, Xu F (2018b) High yield production of 5-hydroxymethylfurfural from carbohydrates over phosphated TiO2–SiO2 heterogeneous catalyst. BioResources 13(4):7873–7885

    CAS  Google Scholar 

  • Wei W, Wu S (2017) Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids. Chem Eng J 307:389–398

    Article  CAS  Google Scholar 

  • Weingarten R, Kim YT, Tompsett GA, Fernández A, Han KS, Hagaman EW, Conner WC, Dumesic JA, Huber GW (2013) Conversion of glucose into levulinic acid with solid metal (IV) phosphate catalysts. J Catal 304:123–134

    Article  CAS  Google Scholar 

  • Xu X, Lv X, Fu J, Lv X (2015) Catalytic decomposition of furfural residue with dilute sulfuric acid to produce levulinic acid in high temperature liquid water. J Chem Eng Chin Univ 29(6):1377–1382

    CAS  Google Scholar 

  • Yang GH, Wang C, Lyu GJ, Lucia LA, Chen JC (2015) Catalysis of glucose to 5-hydroxymethylfurfural using Sn-Beta zeolites and a Bronsted acid in biphasic systems. BioResources 10(3):5863–5875

    CAS  Google Scholar 

  • Zheng X, Zhi Z, Gu X, Li X, Zhang R, Lu X (2017) Kinetic study of levulinic acid production from corn stalk at mild temperature using FeCl3 as catalyst. Fuel 187:261–267

    Article  CAS  Google Scholar 

  • Zhi Z, Li N, Qiao Y, Zheng X, Wang H, Lu X (2015) Kinetic study of levulinic acid production from corn stalk at relatively high temperature using FeCl3 as catalyst: a simplified model evaluated. Ind Crops Prod 76:672–680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are Grateful for the financial support of this research from the National Key R and D Program of China (2016YFD0600803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yang, G., Zhang, X. et al. A kinetic study on the hydrolysis of corncob residues to levulinic acid in the FeCl3–NaCl system. Cellulose 26, 8313–8323 (2019). https://doi.org/10.1007/s10570-019-02711-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02711-7

Keywords

Navigation