Skip to main content
Log in

Influence of plasma treatment on the adhesion between a polymeric matrix and natural fibres

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The aim of this work is to study the influence of low-pressure plasma treatment on cellulose fibres to improve the adhesion between a polymeric matrix and natural fibres used as reinforcement. To evaluate fibre wettability, contact angle measurements were carried out on flax fibres after treatment with plasma under several conditions. Similarly, contact angle measurements were performed without plasma treatment. A comparison between all the samples led to the definition of the optimal plasma treatment conditions. Once the latter were determined, composite materials were prepared with treated and untreated flax fibres and a low-density polyethylene matrix. Composites, with different fibre contents (5 and 40%) and different fibre lengths (1 and 10 mm), were manufactured using a mixer and a hot plate press. The tensile strengths of the composites were assessed to determine optimal fibre content and length, and the plasma treatment effect was also quantified. It was found that the higher the fibre content, the higher the tensile strength, and the higher the Young’s modulus; however, fibre length did not affect tensile strength. Regarding plasma treatment, composites with treated fibres exhibited a considerably improved tensile strength and Young’s modulus. Plasma treatment effects were also studied by X-ray photoelectron spectroscopy and by differential scanning calorimetric. Finally, an analysis of the fibre surface and an interaction study between the matrix and the fibres was conducted with scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abenojar J, Torregrosa-Coque R, Martínez MA, Martín-Martínez JM (2009) Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. Surf Coat Technol 203:2173–2180

    Article  CAS  Google Scholar 

  • Abenojar J, Martinez MA, Velasco F, Rodríguez-Perez M (2014) Atmospheric plasma torch treatment of plyethylene/boroncomposites: effect on thermal stability. Surf Coat Technol 239(25):70–77

    Article  CAS  Google Scholar 

  • Barkoula N, Garkhail S, Peijs T (2009) Effect of compounding and injection molding on the mechanical properties of flax fiber polypropylene composites. J Reinf Plast Compos 29:1366–1385

    Article  Google Scholar 

  • Bismark A, Mishra S, Lampke T (2005) Plant fibers as a reinforcement for green composites. In: Mohnaty AA, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites, Ch. 2. CRC, Boca Ratón

    Google Scholar 

  • Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336

    Article  CAS  Google Scholar 

  • Braithwaite NSJ (2000) Introduction to gas discharges. Plasma Sources Sci Technol 9:517–527

    Article  CAS  Google Scholar 

  • Buchert J, Pere J, Johansson LS, Campbell JM (2001) Analysis of the surface chemistry of linen and cotton fabrics. Text Res J 71(7):626–629

    Article  CAS  Google Scholar 

  • Charlet K, Jernot JP, Eve S, Gomina M, Breard J (2012) Multi-scale morphological characterization of flax to the fibrils. Carbohydr Polym 82:54–61

    Article  Google Scholar 

  • Chastain J, King RC (1995) PHI handbook of X-ray photoelectron spectroscopy. Physical Electronics, Eden Prairie

    Google Scholar 

  • Chollakup R, Smitthipong W, Kongtud W, Tantatherdtam R (2013) Polyethylene green composites reinforced with cellulose fibers (coir and palm fibers): effect of fiber surface treatment and fiber content. J Adhes Sci Technol 27(12):1290–1300

    Article  CAS  Google Scholar 

  • Clark DT, Thomas HR (1976) Applications of ESCA topolymer chemistry. X. Core and valence energy levels of a series of polyacrylates. J Polym Sci Polym Chem Edit 14:1671–1700

    Article  CAS  Google Scholar 

  • Conrads H, Schmidt M (2000) Plasma generation and plasma sources. Plasma Sources Sci Technol 9:441–454

    Article  CAS  Google Scholar 

  • Doan TL, Gao SL, Mader E (2006) Jute/polypropylene composites I: effect of matrix modification. Compos Sci Technol 66:952–963

    Article  CAS  Google Scholar 

  • Duigou AL, Davies P, Baley C (2010) Interfacial bonding of flax fibre/poly(l-lactide) bio-composites. Compos Sci Technol 70:231–239

    Article  Google Scholar 

  • EN 828:2009 Determination by measurements of contact angle and surface free energy of solid surfaces

  • EN ISO 6892-1:2009 Metallic materials—tensile testing—part 1: method of test at room temperature

  • Encinas N, Díaz-Benito B, Abenojar J, Martínez MA (2010) Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surf Coat Technol 205:396–402

    Article  CAS  Google Scholar 

  • Encinas N, Abenojar J, Martínez MA (2012) Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications. Int J Adhes Adhes 33:1–6

    Article  CAS  Google Scholar 

  • European Directive 2000/53/EC of the European parliament and of the council, on end-of life vehicles. OJ L 269, 21.10.2000, p. 34. 18 Sept 2000

  • Gardner SD, Singamsetty CSK, Booth GL, He GR, Pittman CU Jr (1995) Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 33(5):587–595

    Article  CAS  Google Scholar 

  • Geng D, Yanga S, Zhang Y, Yang J, Liu J, Li R, Sham TK, Sun X, Ye S, Knights S (2011) Nitrogen doping effects on the structure of graphene. Appl Surf Sci 257:9193–9198

    Article  CAS  Google Scholar 

  • George J, Sreekala MS, Thomas S (2001) A review on interface modificaction and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485

    Article  CAS  Google Scholar 

  • Ghosh S, Sinha MK (1997) Assesing textile value of pineapple fiber. Indian Text J 88:111–115

    Google Scholar 

  • Gibeop N, Lee DW, Prasada CV, Toru F, Kim BS, Song JI (2013) Effect of plasma treatment on mechanical properties of jute/fiber poly (lactic acid) biodegradable composites. Adv Compos Mater 22(6):389–399

    Article  CAS  Google Scholar 

  • Herrera-Franco PJ, Valadez-González A (2005) A study of the mechanical properties of short natural-fiber reinforced composite. Compos B 36:597–608

    Article  Google Scholar 

  • Hornsby P, Hinrichsen E, Tarverdi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers. Part II: analysis of composite microstructure and mechanical properties. J Mater Sci 32:1009–1015

    Article  CAS  Google Scholar 

  • Ji SG, Cho D, Park WH, Lee BC (2010) Electron beam effect on the tensile properties and topology of jute fibers and the interfacial strength of jute-PLA green composites. Macromol Res 18:919–922

    Article  CAS  Google Scholar 

  • Johansson LS, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies. Surf Interface Anal 36:1018–1022

    Article  CAS  Google Scholar 

  • Johansson LS, Campbell JM, Koljonen K, Stenius P (1999) Evaluation of surface lignin on cellulose fibers with XPS. Appl Surf Sci 144–145:92–95

    Article  Google Scholar 

  • Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37(23):5139–5149

    Article  CAS  Google Scholar 

  • Kadi MW, Hameed A, Mohamed RM, Ismail IMI, Alangari Y, Cheng HM (2016) The effect of Pt nanoparticles distribution on the removal of cyanide by TiO2 coated Al-MCM-41 in blue light exposure. Arab J Chem. doi:10.1016/j.arabjc.2016.02.001

    Google Scholar 

  • Keller A (2003) Compounding and mechanical properties of biodegradable hemp fiber composites. Compos Sci Technol 63(9):1307–1316

    Article  CAS  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B 42:856–873

    Article  Google Scholar 

  • Kusano Y (2014) Atmospheric pressure plasma processing for polymer adhesion: a review. J Adhes 90:755–777

    Article  CAS  Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemicals treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  • Liu W, Drzal LT, Mohanty AK, Misra M (2007) Influence of processing methods and fiber length on physical properties of kenaf fiber soy based biocomposites. Compos B 38(3):352–359

    Article  CAS  Google Scholar 

  • Malkapuram R, Kumar V, Yuvraj SN (2008) Recent development in natural fibre reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189

    Article  Google Scholar 

  • Pérez E, Famá L, Pardo SG, Abad MJ, Bernal C (2012) Tensile and fracture behavior of PP/wood flour composites. Compos B 43:2795–2800

    Article  Google Scholar 

  • Reddy N, Yang Y (2005) Biofibers from agricultural by products for industrial applications. Trends Biotechnol 23:22–27

    Article  CAS  Google Scholar 

  • Rodríguez-Villanueva C, Encinas N, Abenojar J, Martínez MA (2013) Assesment of atmospheric plasma treatment cleaning effect on steel surfaces. Surf Coat Technol 236:450–456

    Article  Google Scholar 

  • Sun CQ, Zhang X, Zhou J, Huang Y, Zhou Y, Zheng W (2013) Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J Phys Chem Lett 4:2565–2570

    Article  CAS  Google Scholar 

  • Tendero C, Tixier C, Tristant P, Demaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta Part B 61(1):2–30

    Article  Google Scholar 

  • Vinod TP, Chang JH, Kim J, Rhee SW (2008) Self-assembly and photopolymerization of diacetylene molecules on surface of magnetite nanoparticles. Bull Korean Chem Soc 29(4):799–804

    Article  CAS  Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics. Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

  • Weng LT, Poleunis C, Bertrand P, Carlier V, Sclavons M, Franquinet P, Legras R (1995) Sizing removal and functionalization of the carbon fiber surface studied by combined TOF SIMS and XPS. J Adhes Sci Technol 9(7):859–871

    Article  CAS  Google Scholar 

  • Wu S, Ladani RB, Zhang J, Kinloch AJ, Zhao Z, Ma J, Zhang X, Mouritz AP, Ghorbani K, Wang CH (2015) Epoxy nanocomposites containing magnetite–carbon nanofibers aligned using a weak magnetic field. Polymer 68:25–34

    Article  CAS  Google Scholar 

  • Zafeiropoulos NE, Vickers PE, Baillie CA, Watts JF (2003) An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR. J Mater Sci 38:3903–3914

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Enciso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enciso, B., Abenojar, J. & Martínez, M.A. Influence of plasma treatment on the adhesion between a polymeric matrix and natural fibres. Cellulose 24, 1791–1801 (2017). https://doi.org/10.1007/s10570-017-1209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1209-x

Keywords

Navigation