Skip to main content

Advertisement

Log in

Determination of Activation Energy and Ping-Pong Kinetic Model Constants of Enzyme-Catalyzed Self-Epoxidation of Free Fatty Acids using Micro-reactor

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work reports bioconversion of unsaturated free fatty acids present in soapstock, inherent waste of edible oil manufacture, to the epoxidized fatty acids using Candida rugose lipase in a micro-reactor. Activation energy of the epoxidation reaction was found to be 32.27 kJ mol−1 while the enzyme deactivation was observed at higher temperature than 35 °C with an activation energy of 91.18 kJ mol−1. The low hydrodynamic retention time in the micro-reactor provides a proper condition to measure of initial rates of the enzymatic reaction. The kinetics study was performed at ten different molar ratios of H2O2/C=C, and constants of the Ping-Pong bi bi model were estimated as follows: the maximum specific enzyme activity (Vmax) of 1.453 × 105 mM min−1 genzyme−1, dissociation constant for enzyme-FFA complex (KA) of 58.83 mM genzyme−1, Michaelis constant for FFAs (KmA) of 1.382 × 103 mM genzyme−1, Michaelis constant for hydrogen peroxide (KmB) of 3.279 × 106 mM genzyme−1, and the deactivation constant due to hydrogen peroxide (KIB) of 59.25 mM genzyme−1. The cross-linked enzyme aggregate technology provided a simple method to produce the robust biocatalyst for this bioconversion where more than 89% of original activity was maintained after 9 cycles in the micro-reactor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moreno VC, Russo V, Tesser R, Serio MD, Salzano E (2017) J Process Saf Environ Prot 109:529–537

    Article  CAS  Google Scholar 

  2. Yuki O, Zhang Y, Ge J, Liu Z (2016) Catal Lett 146(6):1073–1078

    Article  CAS  Google Scholar 

  3. Dumont MJ, Narine SS (2007) Food Res Int 40(8):957–974

    Article  CAS  Google Scholar 

  4. Shao P, Meng X, He J, Sun P (2008) J Food Bioprod Process 86(4):283–289

    Article  Google Scholar 

  5. Alipour S, Habibi A, Taavoni S, Varmira K (2016) Process Biochem 54:9–19

    Article  CAS  Google Scholar 

  6. Mashhadi F, Habibi A, Varmira K (2018) Ind Crops Prod 113:324–334

    Article  CAS  Google Scholar 

  7. Lu H, Sun S, Bi Y, Yang G, Ma R, Yang H (2010) Eur J Lipid Sci Technol 112:1101–1105

    Article  CAS  Google Scholar 

  8. Habibi A, Fahim S, Shirvani N, Rahimi M (2016) J Mol Catal B Enzym 132:47–53

    Article  CAS  Google Scholar 

  9. Urban PL, David DM, Goodall M, Bruce NC (2006) Biotechnol Adv 24(1):42–57

    Article  CAS  PubMed  Google Scholar 

  10. Bornscheuer UT (2003) Angew Chem Int Edit 42(29):3336–3337

    Article  CAS  Google Scholar 

  11. Sheldon RA, Schoevaart R, Van Langen LM (2006) Biocatal Biotransform 23(3–4):141–147

    Google Scholar 

  12. Vaidya BK, Kuwar SS, Golegaonkar SB, Nene SN (2012) J Mol Catal B: Enzym 74(3–4):184–191

    Article  CAS  Google Scholar 

  13. Abreu Correa F, Sutili FK, Miranda LSM, Leite SGF, De Souzaa ROMA, Leal ICR (2012) J Mol Catal B Enzym 81:7–11

    Article  CAS  Google Scholar 

  14. Dinda S, Patwardhan AV, Goud VV, Pradhan NC (2008) Bioresour Technol 99(9):3737–3744

    Article  CAS  PubMed  Google Scholar 

  15. Kim N, Li Y, Sun XS (2015) Ind Crops Prod 64:1–8

    Article  CAS  Google Scholar 

  16. Chua S, Xu X, Guo Z (2012) Process Biochem 47(10):1439–1451

    Article  CAS  Google Scholar 

  17. Cai C, Dai H, Chen R, Su C, Xu X, Zhang S, Yang L (2008) Eur J Lipid Sci Technol 110(4):341–346

    Article  CAS  Google Scholar 

  18. Mungroo R, Pradhan NC, Goud VV, Dalai AK (2008) J Am Oil Chem Soc 85(9):887–896

    Article  CAS  Google Scholar 

  19. Zhang X, Wan X, Cao H, Dewil R, Deng L, Wang F, Tan T, Nie K (2017) Ind Crops Prod 98:10–18

    Article  CAS  Google Scholar 

  20. Jia LK, Gong LX, Ji WJ, Kan CY (2011) Chin Chem Lett 22:1289–1292

    Article  CAS  Google Scholar 

  21. Bhalerao MS, Kulkarni VM, Patwardhan AV (2018) Ultrason Sonochem 40:912–920

    Article  CAS  PubMed  Google Scholar 

  22. Xia W, Budge SM, Lumsden MD (2016) J Am Oil Chem Soc 93(4):467–478

    Article  CAS  Google Scholar 

  23. Benaniba MT, Belhaneche-Bensemra N, Gelbard G (2007) Eur J Lipid Sci Technol 109(12):1186–1193

    Article  CAS  Google Scholar 

  24. Rafiee-Moghaddam R, Salimon J, Jelas haron MD, Jahangirian H, Shah Ismail MH, Hosseini S, Rezayi M (2014) Dig J Nanomater Biostruct 9(3):1159–1169

    Google Scholar 

  25. Lathi PS, Mattiasson B (2007) Appl Catal B 69(3–4):207–212

    Article  CAS  Google Scholar 

  26. Zanette AF, Zampakidi I, Sotiroudis GT, Zoumpanioti M, Leal ICR, Souza ROMA, Cardozo-Filho L, Xenakis A (2014) J Mol Catal B Enzym 107:89–94

    Article  CAS  Google Scholar 

  27. Leveneur S, Zheng J, Taouk B, Burel F, Warna J, Salmi T (2014) J Taiwan Inst Chem Eng 45(4):1449–1458

    Article  CAS  Google Scholar 

  28. Okieimen FE, Bakare OI, Okieimen CO (2002) Ind Crops Prod 15(2):139–144

    Article  CAS  Google Scholar 

  29. Goud VV, Patwardhan AV, Pradhan NC (2006) Bioresour Technol 97(12):1365–1371

    Article  CAS  PubMed  Google Scholar 

  30. Goud VV, Pradhan NC, Patwardhan AV (2006) J Am Oil Chem Soc 83(7):635–640

    Article  CAS  Google Scholar 

  31. Ikhuoria EU, Obuleke RO, Okieimen FE (2007) J Macromol Sci A 44(2):235–323

    Article  CAS  Google Scholar 

  32. Zhang H, Yang H, Guo H, Yang J, Xiong L, Huang C, Chen X, Ma L, Chen Y (2014) J Appl Sci 90:175–180

    CAS  Google Scholar 

  33. Petrovic ZS, Zlatanic A, Lava CC, Sinadinovic-Fiser S (2002) Eur J Lipid Sci Technol 104:293–299

    Article  CAS  Google Scholar 

  34. Silva JMR, Bitencourtb TB, Moreira MA, Nascimento MG (2013) J Mol Catal B Enzym 95:48–54

    Article  CAS  Google Scholar 

  35. Yadav GD, Manjula Devi K (2001) J Am Oil Chem Soc 78(4):347–351

    Article  CAS  Google Scholar 

  36. Tornvall U, Orellana-Coca C, Hatti-Kaul R, Adlercreutz D (2007) Enzym Microb Technol 40:447–451

    Article  CAS  Google Scholar 

  37. Rehman S, Bhatti HN, Bilal M, Asgher M (2016) Int J Biol Macromol 91:1161–1169

    Article  CAS  PubMed  Google Scholar 

  38. Warwel S, gen Klaas MR (1995) J Mol Catal B Enzym 1(1):29–35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambiz Varmira.

Ethics declarations

Conflict of interest

All authors agreed with this submission and declare that they have no conflict of interest for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashhadi, F., Habibi, A. & Varmira, K. Determination of Activation Energy and Ping-Pong Kinetic Model Constants of Enzyme-Catalyzed Self-Epoxidation of Free Fatty Acids using Micro-reactor. Catal Lett 148, 3236–3247 (2018). https://doi.org/10.1007/s10562-018-2503-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2503-4

Keywords

Navigation