Skip to main content
Log in

Introduction of Two Halo-Alkali-thermo-stable Biocatalysts: Purification and Characterization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Halophilic bacterium, producing two extracellular proteases, was isolated from Badab-Sourt, Iran. 16S rDNA analysis shown high similarity with the genera Idiomarina. Maximum secretion of enzymes was observed during the early-stationary phase of bacterial growth. Both extracellular proteases were purified by three purification steps; ammonium sulfate precipitation, Q-Sepharose, and Sephadex G-200 chromatography columns. The molecular weight of purified enzymes was determined by SDS-PAGE gel electrophoresis with approximate masses of 48 and 51 kDa (45.57 and 80.30 U/mg specific activity). Proteases synthesized by strain S-18 were affected by medium compositions. Optimum concentration of substrate, pH, and temperature for both enzymes activity were 0.5% casein, 9.0, and 50 °C. However, purified proteases showed different activity at various salt concentrations, which their maximum activity was determined in the presence of 7.5 and 5% NaCl. The activity of enzymes increased in the presence of metal ions such as Mn2+ and Cu2+ and decreased by the presence of Hg2+ and Fe2+. Both proteases were strongly inhibited by SDS, while DDT, EDTA, and 2-Mercaptoethanol could stimulate their activity. The results of present research might be interesting issue for industrial applications and biotechnological processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lama L, Romano I, Calandrelli V et al (2005) Purification and characterization of a protease produced by an aerobic haloalkaliphilic species belonging to the Salinivibrio genus. Res Microbiol 156(4):478–484

    Article  CAS  Google Scholar 

  2. Maruthiah T, Esakkiraj P, Prabakaran G et al (2013) Purification and characterization of moderately halophilic alkaline serine protease from marine Bacillus subtilis AP-MSU 6. Biocatal Agric Biotechnol 2(2):116–119

    Google Scholar 

  3. Patel R, Dodia M, Singh SP (2005) Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: production and optimization. Process Biochem 40(11):3569–3575

    Article  CAS  Google Scholar 

  4. Karbalaei-Heidari HR, Amoozegar MA, Hajighasemi M et al (2009) Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J Ind Microbiol Biotechnol 36(1):21–27

    Article  CAS  Google Scholar 

  5. Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19(4):261–278

    Article  CAS  Google Scholar 

  6. Rao MB, Tanksale AM, Ghatge MS et al (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62(3):597–635

    CAS  Google Scholar 

  7. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544

    CAS  Google Scholar 

  8. Niehaus F, Bertoldo C, Kähler M et al (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51(6):711–729

    Article  CAS  Google Scholar 

  9. Van Den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6(3):213–218

    Article  Google Scholar 

  10. DasSarma P, Coker JA, Huse V et al (2010) Halophiles, industrial applications. Encyclopedia of Industrial. Biotechnology. https://doi.org/10.1002/9780470054581.eib439

  11. Enache M, Kamekura M (2010) Hydrolitic enzymes of halophilic microorganisms and their economic values. Rom J Biochem 47(1):46–59

    Google Scholar 

  12. Khansha J, Ranjbaran M, Amoozegar MA (2017) Isolation and identification of halophilic and halotolerant bacteria from Badab-e Surt Travertine Spring, Kiasar, Iran, and investigation of calcite biomineralization induction. Geomicrobiol J 54(1):1–10

    Google Scholar 

  13. Biswas J, Paul AK (2013) Production of extracellular enzymes by halophilic bacteria isolated from solar salterns. Int J Appl Biol Pharm Technol 4(4):30–36

    Google Scholar 

  14. Mehrshad M, Amoozegar MA, Yakhchali B et al (2012) Biodiversity of moderately halophilic and halotolerant bacteria in the western coastal line of Urmia lake. Biol J Microorg 1(2)

  15. Lammert J (2007) Techniques in microbiology: a student handbook, vol 10. Prentice Hall, Upper Saddle River

    Google Scholar 

  16. Abdel-Hamed AR, Abo-Elmatty DM, Wiegel J et al (2016) Biochemical characterization of a halophilic, alkalithermophilic protease from Alkalibacillus sp. NM-Da2 Extremophiles 20(6):885–894

    Article  CAS  Google Scholar 

  17. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  18. Kim O-S, Cho Y-J, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(Pt 3):716–721

    Article  CAS  Google Scholar 

  19. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  20. Karbalaei-Heidari HR, Ziaee AA, Schaller J et al (2007) Purification and characterization of an extracellular haloalkaline protease produced by the moderately halophilic bacterium, Salinivibrio sp. strain AF-2004. Enzym Microbial Technol 40(2)

  21. Badoei-Dalfard A, Karami Z, Ravan H (2015) Purification and characterization of a thermo- and organic solvent-tolerant alkaline protease from Bacillus sp. JER02. Prep Biochem Biotechnol 45(2):128–143

    Article  CAS  Google Scholar 

  22. Elbanna K, Ibrahim IM, Revol-Junelles A-M (2015) Purification and characterization of halo-alkali-thermophilic protease from Halobacterium sp. strain HP25 isolated from raw salt, Lake Qarun, Fayoum, Egypt. Extremophiles 19(4):763–774

    Article  CAS  Google Scholar 

  23. Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73(2):627–650

    CAS  Google Scholar 

  24. Cupp-Enyard C (2008) Sigma’s non-specific protease activity assay-casein as a substrate. J Vis Exp (19). https://doi.org/10.3791/899

  25. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  26. Li X, Yu H-Y (2012) Purification and characterization of novel organic-solvent-tolerant beta-amylase and serine protease from a newly isolated Salimicrobium halophilum strain LY20. FEMS Microbiol Lett 329(2):204–211

    Article  CAS  Google Scholar 

  27. Gupta A, Roy I, Patel RK et al (2005) One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J Chromatogr A 1075(1):103–108

    Article  CAS  Google Scholar 

  28. Vidyasagar M, Prakash S, Mahajan V et al (2009) Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101. Braz J Microbiol 40(1):12–19

    Article  CAS  Google Scholar 

  29. Liengme BV (2015) A guide to Microsoft Excel 2013 for scientists and engineers. Academic Press, Amsterdam

    Google Scholar 

  30. Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11(1):85–94

    Article  CAS  Google Scholar 

  31. Delgado-García M, Valdivia-Urdiales B, Aguilar-González CN et al (2012) Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric 92(13):2575–2580

    Article  Google Scholar 

  32. Santos AF, Valle RS, Pacheco CA et al (2013) Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium. Braz J Microbiol 44(4):1299–1304

    Article  Google Scholar 

  33. Margesin R, Schinner F (2011) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5(2):73–83

    Article  Google Scholar 

  34. Sitdhipol J, Visessanguan W, Benjakul S et al (2013) Idiomarina piscisalsi sp. nov., from fermented fish (pla-ra) in Thailand. J Gen Appl Microbiol 59(5):385–391

    Article  CAS  Google Scholar 

  35. León MJ, Martínez-Checa F, Ventosa A et al (2015) Idiomarina aquatica sp. nov., a moderately halophilic bacterium isolated from salterns. Int J Syst Evol Microbiol 65(12):4595–4600

    Article  Google Scholar 

  36. Zhang Y-J, Zhang X-Y, Zhao H-L et al (2012) Idiomarina maris sp. nov., a marine bacterium isolated from sediment. Int J Syst Evol Microbiol 62(Pt 2):370–375

    Article  CAS  Google Scholar 

  37. Du J, Lai Q, Liu Y et al (2015) Idiomarina atlantica sp. nov., a marine bacterium isolated from the deep sea sediment of the North Atlantic Ocean. Antonie Van Leeuwenhoek 107(2):393–401

    Article  CAS  Google Scholar 

  38. Boguslawski G, Shultz JL, Yehle CO (1983) Purification and characterization of an extracellular protease from Flavobacterium arborescen. Anal Biochem 132(1):41–49

    Article  CAS  Google Scholar 

  39. Gilbert C, Atlan D, Blanc B et al (1996) A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbruekii subsp. bulgaricus. J Bacteriol 178(11):3059–3065

    Article  CAS  Google Scholar 

  40. Hiraga K, Nishikata Y, Namwong S et al (2005) Purification and characterization of serine proteinase from a halophilic bacterium, Filobacillus sp. RF2-5. Biosci Biotechnol Biochem 69(1):38–44

    Article  CAS  Google Scholar 

  41. Babe LM, Schmidt B (1998) Purification and biochemical analysis of WprA, a 52-kDa serine protease secreted by B. subtilis as an active complex with its 23-kDa propeptide. Biochim Biophys Acta 1386(1):211–219

    Article  CAS  Google Scholar 

  42. Sinsuwan S, Rodtong S, Yongsawatdigul J (2008) Production and characterization of NaCl-activated proteinases from Virgibacillus sp. SK33 isolated from fish sauce fermentation. Process Biochem 43(2):185–192

    Article  CAS  Google Scholar 

  43. Izotova LS, Strongin AY, Chekulaeva LN et al (1983) Purification and properties of serine protease from Halobacterium halobium. J Bacteriol 155(2):826–830

    CAS  Google Scholar 

  44. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–235

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful Pasture Institute (Amol Branch) for molecular analysis and also thankful Dr. Farzad Mokhtari, Dr. Arastoo Badoei-Dalfard, Mr. Jaber Abbaszadeh, Mr. Shayan Abbasi, Mr. Mohammad Mehdi Choolaei, and Mr. Nima Allah-Yari for their valuable advice. Also, authors wish to thank Neuro-organic Lab. (Institute of biochemistry and biophysics, Tehran University, Iran.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bagher Seyedalipour or Salman Ahmady-Asbchin.

Ethics declarations

Conflict of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satari Faghihi, L., Seyedalipour, B., Riazi, G. et al. Introduction of Two Halo-Alkali-thermo-stable Biocatalysts: Purification and Characterization. Catal Lett 148, 831–842 (2018). https://doi.org/10.1007/s10562-018-2295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2295-6

Keywords

Navigation