Skip to main content
Log in

Biochemical characterization of a halophilic, alkalithermophilic protease from Alkalibacillus sp. NM-Da2

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

An extracellular, halophilic, alkalithermophilic serine protease from the halo-alkaliphilic Alkalibacillus sp. NM-Da2 was purified to homogeneity by ethanol precipitation and anion-exchange chromatography. The purified protease was a monomeric enzyme with an approximate molecular mass of 35 kDa and exhibited maximal activity at 2.7 M NaCl, pH55 °C 9 and 56 °C. The protease showed great temperature stability, retaining greater than 80 % of initial activity after 2 h incubation at 55 °C. The protease was also extremely pH tolerant, retaining 80 % of initial activity at pH55 °C 10.5 after 30 min incubation. Protease hydrolyzed complex substrates, displaying activity on yeast extract, tryptone, casein, gelatin and peptone. Protease activity was inhibited at casein concentrations greater than 1.2 mg/mL. The enzyme was stable and active in 40 % (v/v) solutions of isopropanol, ethanol and benzene and was stable in the presence of the polysorbate surfactant Tween 80. Activity was stimulated with the oxidizing agent hydrogen peroxide. Inhibition with phenyl methylsulfonylfluoride indicates it is a serine protease. Synthetic saline wastewater treated with the protease showed 50 % protein removal after 5 h. Being halophilic, alkaliphilic and thermophilic, in addition to being resistant to organic solvents, this protease has potential for various applications in biotechnological and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anson ML (1938) Estimation of cathepsin and the partial purification of cathepsin. J Gen Physiol 22:79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabaci N, Yasemin C, Maasoglu Y, Arikan B (2013) Partial purification and characterization of thermostable, alkaline and chelator-resistant protease from a newly isolated Bacillus sp. CY7 and its potential applications in various industries JABS 7:14-19

  • Borkar S (2015) Alkaliphilic bacteria: diversity, physiology and industrial applications. In: Borkar S (ed) Bioprospects of Coastal Eubacteria. Springer International Publishing, Switzerland, pp 59–83

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chanalia P, Gandhi D, Jodha D, Singh J (2011) Applications of microbial proteases in pharmaceutical industry: an overview Rev Med Microbiol 22:96–101

    Google Scholar 

  • DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-Garcia M, Valdvia-Urdiales B, Aguilar-Gonzalez CN, Contreras-Esquivel JC, Rodriquez-Herrera R (2012) Halophilic hydrolases as a new tool for biotechnological industries. J Sci Food Agric 92:2575–2580

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Khare SK (2009) Enzymes from solvent-tolerant microbes: useful biocatalysts for nonaqueous enzymology. Crit Rev Biotechnol 29:44–54

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Pancha I, Mishra SK, Shrivastav A, Mishra S (2012) Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp: a potential additive for laundry detergents. Bioresour Technol 115:228–236

    Article  CAS  PubMed  Google Scholar 

  • Jisha VN et al (2013) Versatility of microbial proteases. Adv Enzyme Res 1:39–51

    Article  Google Scholar 

  • Joo HS, Kumar CG, Park GC, Palik SR, Chang CS (2003) Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. J Appl Microbiol 5:267–272

    Article  Google Scholar 

  • Joshi S, Satyanarayana T (2013) Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresour Technol 131:76–85

    Article  CAS  PubMed  Google Scholar 

  • Karbalaei-Heidari HR, Shahbazi M, Absalan G (2013) Characterization of a novel organic solvent tolerant protease from a moderately halophilic bacterium and its behavior in ionic liquids. Appl Biochem Biotechnol 170:573–586

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Dordick JS (2002) Enzyme activation for nonaqueous media. Curr Opin Biotechnol 13:376–384

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682

    Article  CAS  PubMed  Google Scholar 

  • Maruthiah T, Esakkiraj P, Prabakaran G, Palavesam A, Immanuel G (2013) Purification and characterization of moderately halophilic alkaline serine protease from marine Bacillus subtilis AP-MSU 6 Biocat Agri. Biotechnol 2:116–119

    Google Scholar 

  • Maruthiah T, Immanuel G, Palavesam A (2015) Purification and characterization of halophilic organic solvent tolerant protease from marine Bacillus sp. APCMST-RS7 and its antioxidant potentials Proc Natl Acad Sci, India, Sect B Biol Sci. doi:10.1007/s40011-40015-40603-40010

  • Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles App. Environ Microbiol 78:4074–4082

    Article  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2014) Purification and biochemical characterization of halophilic, alkalithermophilic protease AbCP from Alkalibacillus sp. NM-Fa4. J Mol Catal B Enzymatic 105:74–81

    Article  CAS  Google Scholar 

  • Ogino H, Ishikawa H (2001) Enzymes which are stable in the presence of organic solvents. J Biosci Bioeng 91:109–116

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  • Powers JC, Asgian JL, Ekici OD, James KE (2002) Irreversible inhibitors of serine, cysteine and threonine proteases. Chem Rev 102:4639–4750

    Article  CAS  PubMed  Google Scholar 

  • Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99:7907–7913

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg L et al (2004) Safety and efficacy of a proteolytic enzyme for enzymatic burn debridement: A preliminary report. Burns 8:843–850

    Article  Google Scholar 

  • Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends Front Bioeng. Biotechnol 3:148

    Google Scholar 

  • Schmidt TM, Bleakley B, Nealson KH (1988) Characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens App. Environ Microbiol 54:2793–2797

    CAS  Google Scholar 

  • Selim S, Hagagy N, Abdel-Aziz M, El-Meleigy E, Pessione E (2014) Thermostable alkaline halophilic-protease production by Natronolimnobius innermongolicus WN18. Nat Prod Res 28:1476–1479

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Singh SP, Tripathi VR, Garg SK (2012) Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochem 47:1479–1487

    Article  CAS  Google Scholar 

  • Sinha R, Khare SK (2013) Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: Differential role of metal ions in stability and activity. Bioresour Technol 145:357–361

    Article  CAS  PubMed  Google Scholar 

  • Synowiecki J (2015) Some applications of thermophiles and their enzymes for protein processing. Afr J Biotechnol 9:7020–7025

    Google Scholar 

  • Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2:247–267

    Article  Google Scholar 

  • Wilson K (1997) Preparation of genomic DNA from Bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current Protocols in Molecular Biology. Wiley, New York, pp 2.4.1–2.4.5

  • Yin J, Chen J-C, Wu Q, Chen G-Q (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the US, Egypt Science and Technology Joint Fund in cooperation with the Suez Canal University (Egypt) under Project number 1841 and the University of Georgia (USA) under Project Number NSF-OISE-1132412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha M. Mesbah.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Hamed, A.R., Abo-Elmatty, D.M., Wiegel, J. et al. Biochemical characterization of a halophilic, alkalithermophilic protease from Alkalibacillus sp. NM-Da2. Extremophiles 20, 885–894 (2016). https://doi.org/10.1007/s00792-016-0879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0879-x

Keywords

Navigation