Skip to main content
Log in

For Better Industrial Cu/ZnO/Al2O3 Methanol Synthesis Catalyst: A Compositional Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of industrial related Cu/ZnO/Al2O3 methanol catalysts with different compositions were prepared by parallel coprecipitation method at neutral condition. The structural properties were characterized through BET, XRD, TEM, TPD and TPR, and the catalytic performances were evaluated on a 4-tube stainless steel continuous flow fixed-bed microreactor. The influence of composition on performances was investigated. The results show that Al2O3 increases the long-term stability of catalysts due to stabilizing effect, meanwhile, Al also promotes the formation of zincian malachite phase as the precursor during coprecipitation and aging. Furthermore, Al2O3 surface acidity also affects the byproducts selectivity. Cu/Zn ratio influences the activity of catalysts which could be traced back to precursor phases. ZnO also affects the long-term stability probably derived from its spacing effect. Taking activity, long-term stability and product purity all into consideration, an optimized composition was found to be with 2.8 ≤ n(Cu)/n(Zn) ≤ 3.0 and 10 ≤ n(Al) ≤ 12, over which the performances are better than that of commercial C307 catalyst in our experiments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu XM, Lu GQ, Yan ZF, Beltramini J (2003) Ind Eng Chem Res 42:6518–6530

    Article  CAS  Google Scholar 

  2. Aricò AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133–161

    Article  Google Scholar 

  3. Gasteiger HA, Garche J (2008) Fuel Cells, Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA

  4. Kvisle S, Fuglerud T, Kolboe S, Olsbye U, Lillerud KP, Vora BV (2008) Methanol-to-hydrocarbons, handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA

  5. Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens TV, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed 51:5810–5831

    Article  CAS  Google Scholar 

  6. Hansen JB, Højlund Nielsen PE (2008) Methanol synthesis, handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA

  7. Bart JCJ, Sneeden RPA (1987) Catal Today 2:1–124

    Article  CAS  Google Scholar 

  8. Klier K (1984) Appl Surf Sci 19:267–297

    Article  CAS  Google Scholar 

  9. Ponec V (1992) Catal Today 12:227–254

    Article  CAS  Google Scholar 

  10. Behrens M, Studt F, Kasatkin I, Kuehl S, Haevecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Norskov JK, Schloegl R (2012) Science 336:893–897

    Article  CAS  Google Scholar 

  11. Grabow LC, Mavrikakis M (2011) ACS Catal 1:365–384

    Article  CAS  Google Scholar 

  12. Martínez-Suárez L, Siemer N, Frenzel J, Marx D (2015) ACS Catal 5:4201–4218

    Article  Google Scholar 

  13. Yang Y, Mims CA, Mei DH, Peden CHF, Campbell CT (2013) J Catal 298:10–17

    Article  CAS  Google Scholar 

  14. Behrens M, Schlogl R (2013) Z. Anorg Allg Chem 639:2683–2695

    Article  CAS  Google Scholar 

  15. Schur M, Bems B, Dassenoy A, Kassatkine I, Urban J, Wilmes H, Hinrichsen O, Muhler M, Schlogl R (2003) Angew Chem Int Ed 42:3815–3817

    Article  CAS  Google Scholar 

  16. Zhang Q-C, Liu Z-W, Zhu X-H, Wen L-X, Zhu Q-F, Guo K, Chen J-F (2015) Ind Eng Chem Res 54:8874–8882

    Article  CAS  Google Scholar 

  17. Li JL, Inui T (1996) Appl Catal A 137:105–117

    Article  CAS  Google Scholar 

  18. Arena F, Italiano G, Barbera K, Bonura G, Spadaro L, Frusteri F (2009) Catal Today 143:80–85

    Article  CAS  Google Scholar 

  19. Baltes C, Vukojevic S, Schueth F (2008) J Catal 258:334–344

    Article  CAS  Google Scholar 

  20. Behrens M, Zander S, Kurr P, Jacobsen N, Senker J, Koch G, Ressler T, Fischer RW, Schlogl R (2013) J Am Chem Soc 135:6061–6068

    Article  CAS  Google Scholar 

  21. Forzatti P, Tronconi E, Pasquon I (1991) Catal Rev 33:109–168

    Article  CAS  Google Scholar 

  22. Slaa JC, Vanommen JG, Ross JRH (1992) Catal Today 15:129–148

    Article  CAS  Google Scholar 

  23. Bems B, Schur M, Dassenoy A, Junkes H, Herein D, Schlögl R (2003) Chem Eur J 9:2039–2052

    Article  CAS  Google Scholar 

  24. Lu ZP, Yin HB, Wang AL, Hu J, Xue WP, Yin HX, Liu SX (2016) J Ind Eng Chem 37:208–215

    Article  CAS  Google Scholar 

  25. Spencer MS (2000) Catal Lett 66:255–257

    Article  CAS  Google Scholar 

  26. Millar GJ, Holm IH, Uwins PJR, Drennan J (1998) J Chem Soc-Faraday Trans 94:593–600

    Article  CAS  Google Scholar 

  27. Behrens M, Kasatkin I, Kühl S, Weinberg G (2010) Chem Mater 22:386–397

    Article  CAS  Google Scholar 

  28. Behrens M (2009) J Catal 267:24–29

    Article  CAS  Google Scholar 

  29. Behrens M, Girgsdies F (2010) Z. Anorg Allg Chem 636:919–927

    Article  CAS  Google Scholar 

  30. Ressler T, Kniep BL, Kasatkin I, Schlögl R (2005) Angew Chem Int Ed 44:4704–4707

    Article  CAS  Google Scholar 

  31. Günter MM, Ressler T, Bems B, Büscher C, Genger T, Hinrichsen O, Muhler M, Schlögl R (2001) Catal Lett 71:37–44

    Article  Google Scholar 

  32. Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng X, Matranga C (2012) ACS Catal 2:1667–1676

    Article  CAS  Google Scholar 

  33. Chary KVR, Sagar GV, Naresh D, Seela KK, Sridhar B (2005) J Phys Chem B 109:9437–9444

    Article  CAS  Google Scholar 

  34. Chary KVR, Sagar GV, Srikanth CS, Rao VV (2007) J Phys Chem B 111:543–550

    Article  CAS  Google Scholar 

  35. Guo X, Mao D, Lu G, Wang S, Wu G (2010) J Catal 271:178–185

    Article  CAS  Google Scholar 

  36. Balaraju M, Rekha V, Prasad PSS, Prasad RBN, Lingaiah N (2008) Catal Lett 126:119–124

    Article  CAS  Google Scholar 

  37. Ma Z-Y, Yang C, Wei W, Li W-H, Sun Y-H (2005) J Mol Catal A 231:75–81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by NUPTSF, Grant No. NY215016 and NY215079. The authors also thank Lin Xia (SARI) and Yanzhang Yang (SARI) for the help on characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, K., Wang, Q., Qi, X. et al. For Better Industrial Cu/ZnO/Al2O3 Methanol Synthesis Catalyst: A Compositional Study. Catal Lett 147, 1581–1591 (2017). https://doi.org/10.1007/s10562-017-2022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2022-8

Keywords

Navigation