Skip to main content
Log in

A Composite Catalyst with a Lamellar Fe3O4/Pt/Fe3O4 Structure and Complementary Dual Catalytic Functions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A composite catalyst with a lamellar Fe3O4/Pt/Fe3O4 structure has been prepared from an Al67Pt7Fe26 (at.%) alloy by leaching with an aqueous 10 % NaOH solution. The lamellar Fe3O4/Pt/Fe3O4 phase exhibits significant catalytic performance as measured by activity and selectivity during the steam reforming of methanol \(\left( {{\text{SRM}}:{\text{CH}}_{ 3} {\text{OH }} + {\text{ H}}_{ 2} {\text{O}} \to {\text{CO}}_{ 2} + {\text{ 3H}}_{ 2} } \right)\) superior to the catalytic performance of Pt obtained from Al2Pt and a conventional impregnated Pt/Fe3O4 catalyst under the same reaction conditions. It is clear that the Pt and Fe3O4 were primarily responsible for the catalysis of the decomposition of methanol \(\left( {{\text{DM}}:{\text{ CH}}_{ 3} {\text{OH}} \to {\text{CO }} + {\text{ 2H}}_{ 2} } \right)\) and the water gas shift reaction \(\left( {{\text{WGSR}}:{\text{ CO }} + {\text{ H}}_{ 2} {\text{O}} \rightleftarrows {\text{CO}}_{ 2} + {\text{ H}}_{ 2} } \right)\), respectively. These two reactions work together in a complementary manner to facilitate the overall SRM reaction due to efficient the heat transfer characteristics of the lamellar Fe3O4/Pt/Fe3O4 structure. In this study, we demonstrate that a lamellar structure is available to couple two separate reactions to obtain a new catalytic function.

Graphical Abstract

In order to improve catalytic properties (stability, functionality), we combined with eutectic alloys and leaching treatment to obtain alternately binary phases with nano-architecture for catalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Raney M (1927) US Patent 1,628,190, 5 Oct 1927

  2. Raney M (1940) Ind Eng Chem 32:1199

    Article  CAS  Google Scholar 

  3. Wainwright MS (1997) In: Ertl G, Knozinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 1. Wiley, Weinheim, p 64

    Google Scholar 

  4. Kameoka S, Tsai AP (2010) J Mater Chem 20:7348

    Article  CAS  Google Scholar 

  5. Xu Y, Yoshikawa H, Jang JH, Demura M, Kobayashi K, Ueda S, Yamashita Y, Wee DM, Hirano T (2010) J Phys Chem C 114:6047

    Article  CAS  Google Scholar 

  6. Tanaka M, Katsuya Y, Yamamoto A (2008) Rev Sci Inst 79:075106

    Article  Google Scholar 

  7. Tsai AP, Yoshimura M (2001) Appl Catal A 214:237

    Article  CAS  Google Scholar 

  8. Burkhardt U, Grin Y, Ellner M, Peters K (1994) Acta Cryst B50:313

    Article  CAS  Google Scholar 

  9. Ohshima K, Ohhashi S, Kameoka S, Tsai AP, Yubuta K (2013) In: The 153th annual meeting JIM. Kanazawa, p 562

  10. Massalski TB (Editor-in-Chief) (1990) In: Binary alloy phase diagrams, 2nd edn, vol 1. ASM International, USA, p 147

  11. Elliott R (1983) In: Eutectic solidification processing. Butterworths, London

  12. Takezawa N, Iwasa N (1997) Catal Today 36:45

    Article  CAS  Google Scholar 

  13. Ito S, Suwa Y, Kondo S, Kameoka S, Tomishige K, Kunimori K (2003) Catal Commun 4:499

    Article  CAS  Google Scholar 

  14. Rhodes C, Hutchings GJ, Ward AM (1995) Catal Today 23:43

    Article  CAS  Google Scholar 

  15. Wang XJ, Renn J, Spencer J, Ratnasamy C, Cai Y (2013) Top Catal 56:1899

    Article  Google Scholar 

  16. Panagiotopoulou P, Kondarides DI (2007) Catal Today 127:319

    Article  CAS  Google Scholar 

  17. Kotobuki M, Watanabe A, Uchida H, Yamashita H, Watanabe M (2005) J Catal 236:262

    Article  CAS  Google Scholar 

  18. Tanaka K, Shou M, He H, Shi X (2006) Catal Lett 110:185

    Article  CAS  Google Scholar 

  19. Sun YN, Qin ZH, Lewandowski M, Cawasco E, Sterrer M, Shaikhutdinov S, Freund JH (2009) J Catal 266:359

    Article  CAS  Google Scholar 

  20. Xu LS, Wu ZF, Jin YK, Ma YS, Huang WX (2013) Phys Chem Chem Phys 15:12068

    Article  CAS  Google Scholar 

  21. Takanashi K, Mitani S, Sano M, Fujimori H (1995) Appl Phys Lett 67:1016

    Article  CAS  Google Scholar 

  22. Paniago R, Forrest R, Chow PC, Moss SC (1997) Phys Rev B 56:13442

    Article  CAS  Google Scholar 

  23. Grondilova J, Rickart M (2002) J Appl Phys 91:8246

    Article  CAS  Google Scholar 

  24. Yamada Y, Tsung CK, Huang W, Huo Z, Habas SE, Soejima T, Aliaga CE, Somorjai GA, Yang P (2011) Nat Chem 3:372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Masahiko Shimoda (NIMS) for helpful discussions, Mr. Eiji Aoyagi (IMR Tohoku University) for SEM–EDS observations and to Dr. Yoshitaka Matsushita, Dr. Masahiko Tanaka and Dr. Yoshiyuki Yamashita (NIMS) for assistance during the powder XRD and HEXPS measurements at SPring-8 (beam line 15XU: Proposal Nos. 2010B4500, 2011A4501, 2012A4500 and 2012B4502). This work was supported in part by Grant-in-Aid for Scientific Research [(A) 23,247,117 and (B) 24,360,329] from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kameoka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameoka, S., Wakabayashi, S., Ohshima, K. et al. A Composite Catalyst with a Lamellar Fe3O4/Pt/Fe3O4 Structure and Complementary Dual Catalytic Functions. Catal Lett 145, 1457–1463 (2015). https://doi.org/10.1007/s10562-015-1553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1553-0

Keywords

Navigation