Skip to main content
Log in

First-Principles Study of Oxygen Evolution Reaction on the Oxygen-Containing Species Covered CoII-Exposing Co3O4 (100) Surface

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The first-principles calculations were used to investigate the oxygen evolution reaction (OER) on the (100) surface of the spinel Co3O4, a high-performance oxidation catalyst. We compared the OER activities by the free-energy changes on three different covered surfaces including (i) clean, (ii) 0.5 monolayer O covered, and (iii) 0.5 monolayer OH covered surfaces, and the computed overpotential (η) for the three surfaces followed the order: O covered (η = 0.45 V) <OH covered (0.93 V) <clean (1.82 V). Furthermore, the influence of activities was analyzed by Bader charge, which showed that the Co Bader charge on the O/OH covered (100) surface was more than that on the clean surface. Based the above analysis, the O-containing species covered Co3O4 (100) surface exhibited better OER catalytic performance than that of the clean surface in the OER cycle.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hamdani M, Singh RN, Chartier P (2010) Int J Electrochem Sci 5:556

    CAS  Google Scholar 

  2. Pinaud BA, Chen Z-B, Abram DN, Jaramillo TF (2011) J Phys Chem C 115:11830

    Article  CAS  Google Scholar 

  3. Liao P-L, Keith JA, Carter EA (2012) J Am Chem Soc 134:13296

    Article  CAS  Google Scholar 

  4. García-Mota M, Bajdich M, Viswanathan V, Vojvodic A, Bell AT, Nørskov JK (2012) J Phys Chem C 116:21077

    Article  Google Scholar 

  5. Bajdich M, García-Mota M, Vojvodic A, Nørskov JK, Bell AT (2013) J Am Chem Soc 135:13521

    Article  CAS  Google Scholar 

  6. Li Y-F, Selloni A (2014) ACS Catal 4:1148

    Article  CAS  Google Scholar 

  7. Tripkovic V, Cerri I, Bligaard T, Rossmeisl J (2014) Catal Lett 144:380

    Article  CAS  Google Scholar 

  8. Hisatomi T, Takanabe K, Domen K (2015) Catal Lett 145:95–108. doi:10.1007/s10562-014-1397-z

    Article  CAS  Google Scholar 

  9. Ma B-J, Wen F-Y, Jiang H-F, Yang J-H, Ying P-L, Li C (2010) Catal Lett 134:78

    Article  CAS  Google Scholar 

  10. Fang Y-H, Liu Z-P (2010) J Am Chem Soc 132:18214

    Article  CAS  Google Scholar 

  11. Liu X, Wang F-Y (2012) Coord Chem Rev 256:1115

    Article  CAS  Google Scholar 

  12. Rossmeisl J, Qu Z-W, Zhu H, Kroes G-J, Norskov JK (2007) J Electroanal Chem 607:83

    Article  CAS  Google Scholar 

  13. Marshall A, Tsypkin M, Hagen G, Tunold R (2004) J New Mater Electrochem Syst 7:197

    CAS  Google Scholar 

  14. Rodríguez-Lópe J, Minguzzi A, Bard AJ (2010) J Phys Chem C 114:18645

    Article  Google Scholar 

  15. Yeo BS, Bell AT (2011) J Am Chem Soc 133:5587

    Article  CAS  Google Scholar 

  16. Du P-W, Eisenberg R (2012) Energy Environ Sci 5:6012

    Article  CAS  Google Scholar 

  17. Petitto SC, Marsh EM, Carson GA, Langell MA (2008) J Mol Catal A Chem 281:49

    Article  CAS  Google Scholar 

  18. Zasada F, Piskorz W, Cristol S, Paul JF, Kotarba A, Sojka Z (2010) J Phys Chem C 114:22245

    Article  CAS  Google Scholar 

  19. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159

    Article  CAS  Google Scholar 

  20. Chen J, Wu X, Selloni A (2011) Phys Rev B 83:245204

    Article  Google Scholar 

  21. Chen J, Selloni A (2012) J Phys Chem Lett 3:2808

    Article  CAS  Google Scholar 

  22. Chen J, Selloni A (2012) Phys Rev B 85:085306

    Article  Google Scholar 

  23. Chen J, Selloni A (2013) J Phys Chem C 117:20002

    Article  CAS  Google Scholar 

  24. Lu B, Cao D-X, Wang P, Wang G-L, Gao Y-Y (2011) Int J Hydrog Energy 36:72

    Article  CAS  Google Scholar 

  25. Kanan MW, Nocera DG (2008) Science 321:1072

    Article  CAS  Google Scholar 

  26. Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG (2010) J Am Chem Soc 132:13692

    Article  CAS  Google Scholar 

  27. McAlpin JG, Surendranath Y, Dincǎ M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) J Am Chem Soc 132:6882

    Article  CAS  Google Scholar 

  28. Surendranath Y, Lutterman DA, Liu Y, Nocera DG (2012) J Am Chem Soc 134:6326

    Article  CAS  Google Scholar 

  29. Wang L-P, Voorhis TV (2011) J Phys Chem Lett 2:2200

    Article  CAS  Google Scholar 

  30. Mavros MG, Tsuchimochi T, Kowalczyk T, McIsaac A, Wang L-P, Voorhis TV (2014) Inorg Chem 53:6386

    Article  CAS  Google Scholar 

  31. Montoya A, Haynes BS (2011) Chem Phys Lett 502:63

    Article  CAS  Google Scholar 

  32. Xu X-L, Chen Z-H, Li Y, Chen W-K, Li J-Q (2009) Surf Sci 603:653

    Article  CAS  Google Scholar 

  33. Rios E, Chartier P, Gautier JL (1999) Solid State Sci 1:267

    Article  CAS  Google Scholar 

  34. Liang Y-Y, Wang H-L, Zhou J-G, Li Y-G, Wang J, Regier T, Dai H-J (2012) J Am Chem Soc 134:3517

    Article  CAS  Google Scholar 

  35. Wang H-F, Kavanagh R, Guo Y-L, Guo Y, Lu G-Z, Hu P (2012) J Catal 296:110

    Article  CAS  Google Scholar 

  36. Pollard MJ, Weinstock BA, Bitterwolf TE, Griffiths PR, Newberyb AP, Paine JB (2008) J Catal 254:218

    Article  CAS  Google Scholar 

  37. Xiao J-W, Kuang Q, Yang S-H, Xiao F, Wang S, Guo L (2013) Sci Rep 3:2300

    Google Scholar 

  38. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108:17886

    Article  CAS  Google Scholar 

  39. Cohen AJ, Mori-Sanchez P, Yang W-T (2008) Science 321:792

    Article  CAS  Google Scholar 

  40. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  41. Kresse G, Joubert J (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  42. Kwapien K, Piccinin S, Fabris S (2013) J Phys Chem Lett 4:4223

    Article  CAS  Google Scholar 

  43. Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107

    Article  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  45. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943

    Article  CAS  Google Scholar 

  46. Wyckoff RWG (1965) Crystal structures, 2nd edn. Interscience, New York

    Google Scholar 

  47. Dutta P, Seehra MS, Thota S, Kumar J (2008) J Phys Condens Matter 20:015218

    Article  Google Scholar 

  48. Roth WL (1964) J Phys Chem Solids 25:1

    Article  CAS  Google Scholar 

  49. Wu J-Z, Jiang T, Jiang D-E, Jin Z-H, Henderson D (2011) Soft Matter 7:11222

    Article  CAS  Google Scholar 

  50. Wei G-F, Fang Y-H, Liu Z-P (2012) J Phys Chem C 116:12696

    Article  CAS  Google Scholar 

  51. Fang Y-H, Wei G-F, Liu Z-P (2013) J Phys Chem C 117:7669

    Article  CAS  Google Scholar 

  52. Chen D, Fang Y-H, Liu Z-P (2012) Phys Chem Chem Phys 14:16612

    Article  CAS  Google Scholar 

  53. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  54. Martínez JI, Hansen HA, Rossmeisl J, Nørskov JK (2009) Phys Rev B 79:045120

    Article  Google Scholar 

  55. Rossmeisl J, Logadottir A, Nørskov JK (2005) Chem Phys 319:178

    Article  CAS  Google Scholar 

  56. Exner KS, Anton J, Jacob T, Over H (2014) Electrochim Acta 120:460

    Article  CAS  Google Scholar 

  57. Karlberg GS, Jaramillo TF, Skulason E, Rossmeisl J, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:126101

    Article  CAS  Google Scholar 

  58. Viswanathan V, Hansen HA, Rossmeisl J, Jaramillo TF, Pitsch H, Nørskov JK (2012) J Phys Chem C 116:4698

    Article  CAS  Google Scholar 

  59. Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J (2010) Phys Chem Chem Phys 12:283

    Article  CAS  Google Scholar 

  60. Petrykin V, Macounova K, Shlyakhtin OA, Krtil P (2010) Angew Chem Int Ed 122:4923

    Article  Google Scholar 

  61. Wang LP, Wu Q, Voorhis TV (2010) Inorg Chem 49:4543

    Article  CAS  Google Scholar 

  62. Tripkovića V, Skúlasona E, Siahrostamia S, Nørskov JK, Rossmeisl J (2010) Electrochim Acta 55:7975

    Article  Google Scholar 

  63. Henkelman G, Arnaldsson A, Jonsson H (2006) Comput Mater Sci 36:354

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (21103007), 863 Program (2012AA03A609), by the Youth Education Talent Plan of Beijing (YETP0510), and by the Fundamental Research Funds for the Central Universities (YS1406). The study was also supported by “CHEMCLOUDCOMPUTING” of Beijing University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Dong, Y., Kou, Y. et al. First-Principles Study of Oxygen Evolution Reaction on the Oxygen-Containing Species Covered CoII-Exposing Co3O4 (100) Surface. Catal Lett 145, 1169–1176 (2015). https://doi.org/10.1007/s10562-015-1512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1512-9

Keywords

Navigation