Skip to main content
Log in

The effect of cryopreservation on DNA methylation patterns of the chromosome 15q11–q13 region in human spermatozoa

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Human sperm cryopreservation is a common technique which is used in assisted reproductive technologies. Despite the existence of evidence supporting the production of ROS and DNA fragmentation during sperm cryopreservation, there is little and equivocal information about the cryopreservation effects on methylation of imprinted genes and imprinting control regions. In this study, we have investigated the effects of cryopreservation on DNA methylation in promoter regions of SNURF-SNRPN and UBE3A imprinted genes, PWS-ICR and AS-ICR in the chromosome 15q11–q13 region. Semen samples from 10 healthy normozoospermic men were collected and each sample was divided into four equal aliquots: fresh, cryoprotectant, cryopreservation, and H2O2. We measured the ROS levels and DNA fragmentation using DCFH-DA and TUNEL assay respectively by flow cytometry. DNA methylation in promoter regions of SNURF-SNRPN and UBE3A imprinted genes, PWS-ICR and AS-ICR in the chromosome 15q11–q13 region were evaluated by quantitative methylation-specific PCR technique. Intracellular levels of ROS and percentage of TUNEL-positive spermatozoa significantly increased in cryopreservation group compared to fresh group. Exposure to cryoprotectant had no significant effect on ROS levels and DNA fragmentation. Neither cryopreservation nor exposure to cryoprotectant significantly affected DNA methylation of the selected gene regions. However, DNA fragmentation had positive correlation with DNA methylation of AS-ICR. In conclusion, based on our study, clinical use of sperm cryopreservation for fertility treatments appear to be safe in regard to DNA methylation in the chromosome 15q11–q13 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdolmaleky HM, Smith CL, Zhou JR, Thiagalingam S (2008) Epigenetic alterations of the dopaminergic system in major psychiatric disorders. In: Yan Q (ed) Pharmacogenomics in drug discovery and development. Springer, Berlin, pp 187–212

    Google Scholar 

  • Abdolmaleky HM, Nohesara S, Ghadirivasfi M, Lambert AW, Ahmadkhaniha H, Ozturk S, Wong CK, Shafa R, Mostafavi A, Thiagalingam S (2014) DNA hypermethylation of serotonin transporter gene promoter in drug naive patients with schizophrenia. Schizophr Res 152(2–3):373–380

    PubMed  PubMed Central  Google Scholar 

  • Abramowitz LK (2013) Genomic imprinting: establishment, maintenance and stability of DNA methylation imprints

  • Al Ageeli E, Drunat S, Delanoë C, Perrin L, Baumann C, Capri Y, Fabre-Teste J, Aboura A, Dupont C, Auvin S (2014) Duplication of the 15q11–q13 region: clinical and genetic study of 30 new cases. Eur J Hum Genet 57(1):5–14

    Google Scholar 

  • Amor DJ, Halliday J (2008) A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod 23(12):2826–2834

    PubMed  Google Scholar 

  • Bell M, Wang R, Hellstrom WJ, Sikka SC (1993) Effect of cryoprotective additives and cryopreservation protocol on sperm membrane lipid peroxidation and recovery of motile human sperm. J Androl 14(6):472–478

    CAS  PubMed  Google Scholar 

  • Buiting K (2010) Prader–Willi syndrome and Angelman syndrome. Paper presented at the American Journal of Medical Genetics Part C Seminars in Medical Genetics, vol 154, no 3, pp 365–376

  • Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B (1995) Inherited microdeletions in the Angelman and Prader–Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet 9(4):395

    CAS  PubMed  Google Scholar 

  • Cambi M, Tamburrino L, Marchiani S, Olivito B, Azzari C, Forti G, Baldi E, Muratori M (2013) Development of a specific method to evaluate 8-hydroxy, 2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reproduction 145(3):227–235

    CAS  PubMed  Google Scholar 

  • Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA (2008) Growth and development of children born after in vitro fertilization. Fertil Steril 90(5):1662–1673

    PubMed  Google Scholar 

  • Coll San Martín L, Vidal F (2015) Effect of cryopreservation in the imprinting pattern of gametes

  • De Paula TS, Bertolla RP, Spaine DM, Cunha MA, Schor N, Cedenho AP (2006) Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertil Steril 86(3):597–600

    PubMed  Google Scholar 

  • De Rycke M, Liebaers I, Van Steirteghem A (2002) Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance. Hum Reprod 17(10):2487–2494

    PubMed  Google Scholar 

  • De Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, Brady AF, Fairbrother UL, Dattani M, Keogh JM (2009) A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 18(17):3257–3265

    PubMed  PubMed Central  Google Scholar 

  • Di Santo M, Tarozzi N, Nadalini M, Borini A (2012) Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012:854837

    PubMed  Google Scholar 

  • Donkena KV, Young CY, Tindall DJ (2010) Oxidative stress and DNA methylation in prostate cancer. Obstet Gynecol Int J 2010:302051

    Google Scholar 

  • Duru NK, Morshedi MS, Schuffner A, Oehninger S (2001) Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. J Androl 22(4):646–651

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Cui H, Ohlsson R (2002) DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol 12(5):389–398

    CAS  PubMed  Google Scholar 

  • Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266(1):6–11

    CAS  PubMed  Google Scholar 

  • García-Herrero S, Garrido N, Martínez-Conejero JA, Remohí J, Pellicer A, Meseguer M (2011) Differential transcriptomic profile in spermatozoa achieving pregnancy or not via ICSI. Reprod Biomed Online 22(1):25–36

    PubMed  Google Scholar 

  • Gineitis AA, Zalenskaya IA, Yau PM, Bradbury EM, Zalensky AO (2000) Human sperm telomere-binding complex involves histone H2B and secures telomere membrane attachment. J Cell Biol 151(7):1591–1598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillaumet-Adkins A, Yañez Y, Peris-Diaz MD, Calabria I, Palanca-Ballester C, Sandoval J (2017) Epigenetics and oxidative stress in aging. Oxid Med Cell Longev 2017:9175806

    PubMed  PubMed Central  Google Scholar 

  • Hepburn P, Margison G, Tisdale M (1991) Enzymatic methylation of cytosine in DNA is prevented by adjacent O6-methylguanine residues. J Biol Chem 266(13):7985–7987

    CAS  PubMed  Google Scholar 

  • Hiura H, Okae H, Chiba H, Miyauchi N, Sato F, Sato A, Arima T (2014) Imprinting methylation errors in ART. Reprod Med Biol 13(4):193–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT (2014) Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet 10(7):e1004458

    PubMed  PubMed Central  Google Scholar 

  • Kläver R, Bleiziffer A, Redmann K, Mallidis C, Kliesch S, Gromoll J (2012) Routine cryopreservation of spermatozoa is safe—evidence from the DNA methylation pattern of nine spermatozoa genes. J Assist Reprod Genet 29(9):943–950

    PubMed  PubMed Central  Google Scholar 

  • Kopeika J, Thornhill A, Khalaf Y (2014) The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum Reprod Update 21(2):209–227

    PubMed  Google Scholar 

  • Lewis MW, Brant JO, Kramer JM, Moss JI, Yang TP, Hansen PJ, Williams RS, Resnick JL (2015) Angelman syndrome imprinting center encodes a transcriptional promoter. Proc Natl Acad Sci 112(22):6871–6875

    CAS  PubMed  Google Scholar 

  • Li Y, Lalancette C, Miller D, Krawetz SA (2008) Characterization of nucleohistone and nucleoprotamine components in the mature human sperm nucleus. Asian J Androl 10(4):535–541

    CAS  PubMed  Google Scholar 

  • Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, Cho JW, Park YM, Jung G (2008) Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135(6):2128–2140

    CAS  PubMed  Google Scholar 

  • Lu WH, Yang XY, Liang XW, Gu YQ (2015) AB082. Effect of cryopreservation on DNA methylation status of imprinted genes in human sperm. Transl Androl Urol 4(Suppl 1):55–56

    Google Scholar 

  • MacDonald WA (2012) Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. Genet Res Int 2012:585024

    PubMed  PubMed Central  Google Scholar 

  • Manipalviratn S, DeCherney A, Segars J (2009) Imprinting disorders and assisted reproductive technology. Fertil Steril 91(2):305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manvelyan M, Hunstig F, Bhatt S, Mrasek K, Pellestor F, Weise A, Simonyan I, Aroutiounian R, Liehr T (2008) Chromosome distribution in human sperm—a 3D multicolor banding-study. Mol Cytogenet 1(1):25

    PubMed  PubMed Central  Google Scholar 

  • Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11(4):285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menezo YJ, Elder K, Dale B (2015) Link between increased prevalence of autism spectrum disorder syndromes and oxidative stress, DNA methylation, and imprinting: the impact of the environment. JAMA Pediatr 169(11):1066–1067

    PubMed  Google Scholar 

  • Menezo YJ, Silvestris E, Dale B, Elder K (2016) Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reprod Biomed Online 33(6):668–683

    CAS  PubMed  Google Scholar 

  • Molina Ò, Anton E, Vidal F, Blanco J (2012) High rates of de novo 15q11q13 inversions in human spermatozoa. Mol Cytogenet 5(1):11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montjean D, Zini A, Ravel C, Belloc S, Dalleac A, Copin H, Boyer P, McElreavey K, Benkhalifa M (2015) Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology 3(2):235–240

    CAS  PubMed  Google Scholar 

  • Neumann B (1995) Characteristics of imprinted genes. Nat Genet 9(1):12

    CAS  PubMed  Google Scholar 

  • Olszewska M, Barciszewska MZ, Fraczek M, Huleyuk N, Chernykh VB, Zastavna D, Barciszewski J, Kurpisz M (2017) Global methylation status of sperm DNA in carriers of chromosome structural aberrations. Asian J Androl 19(1):117

    CAS  PubMed  Google Scholar 

  • Paoloni-Giacobino A, Chaillet JR (2004) Genomic imprinting and assisted reproduction. Reprod Health 1(1):6

    PubMed  PubMed Central  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2(1):21

    CAS  PubMed  Google Scholar 

  • Riesco M, Robles V (2012) Quantification of DNA damage by q-PCR in cryopreserved zebrafish primordial germ cells. J Appl Ichthyol 28(6):925–929

    CAS  Google Scholar 

  • Riesco MF, Robles V (2013) Cryopreservation causes genetic and epigenetic changes in zebrafish genital ridges. PLoS ONE 8(6):e67614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597

    CAS  PubMed  Google Scholar 

  • Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL (2008) Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40(6):719–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Said TM, Gaglani A, Agarwal A (2010) Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online 21(4):456–462

    PubMed  Google Scholar 

  • Shaffer LG, Tommerup N (2005) An international system for human cytogenetic nomenclature ISCN 2005

  • Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang JA, Clark AM (2009) Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod 24(9):2061–2070

    CAS  PubMed  Google Scholar 

  • Tunc O, Tremellen K (2009) Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 26(9–10):537–544

    PubMed  PubMed Central  Google Scholar 

  • Turk PW, Laayoun A, Smith SS, Weitzman SA (1995) DNA adduct 8-hydroxyl-2′-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. Carcinogenesis 16(5):1253–1255

    CAS  PubMed  Google Scholar 

  • Valcarce D, Cartón-García F, Riesco M, Herráez M, Robles V (2013) Analysis of DNA damage after human sperm cryopreservation in genes crucial for fertilization and early embryo development. Andrology 1(5):723–730

    CAS  PubMed  Google Scholar 

  • Wang AW, Zhang H, Ikemoto I, Anderson DJ, Loughlin KR (1997) Reactive oxygen species generation by seminal cells during cryopreservation. Urology 49(6):921–925

    CAS  PubMed  Google Scholar 

  • Ward WS (2010) Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 16(1):30–36

    CAS  PubMed  Google Scholar 

  • Wu Q, Ni X (2015) ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets 16(1):13–19

    PubMed  Google Scholar 

  • Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278(32):29471–29477

    CAS  PubMed  Google Scholar 

  • Yeste M (2016) Sperm cryopreservation update: cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 85(1):47–64

    CAS  PubMed  Google Scholar 

  • Zalenskaya IA, Bradbury EM, Zalensky AO (2000) Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun 279(1):213–218

    CAS  PubMed  Google Scholar 

  • Zhou XWY, Tian L, Ma L, Yan B, Tian J, Zhang F, Zhou Y, Wang H (2017) DNA methylation and expression of SNRPN and GRB10 imprinted genes in human semen freezing-thawing process. J Shandong Univ 152(2–3):373–380

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Tehran University of Medical Sciences for the financial support (Grant No: 32185). Also, the authors would like to express their profound gratitude to Dr. Nancy L. Brackett (Professor of Neurological Surgery and Urology, University of Miami Miller School of Medicine) for her constructive suggestions on revising. Her willingness to give her time so generously is very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Reza Hosseini or Farid Abolhassani.

Ethics declarations

Conflict of interest

All authors declare that there is no known conflict of interest regarding this publication.

Ethical approval

Human semen samples were collected in accordance with Research Ethical Committee (IR.TUMS.MEDICINE.REC.1395.860) of Tehran University of Medical Sciences (Tehran, Iran) and all participants have given the written informed consent for participation in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravizadeh, Z., Hassanzadeh, G., Tavakkoly Bazzaz, J. et al. The effect of cryopreservation on DNA methylation patterns of the chromosome 15q11–q13 region in human spermatozoa. Cell Tissue Bank 21, 433–445 (2020). https://doi.org/10.1007/s10561-020-09828-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-020-09828-1

Keywords

Navigation