Skip to main content
Log in

Aberrant DNA Methylation of IGF2-H19 Locus in Human Fetus and in Spermatozoa From Assisted Reproductive Technologies

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Given the higher risk of developing imprinting disorders in assisted reproductive technology (ART)-conceived children, we hypothesized that ART may affect DNA methylation of the insulin-like growth factor 2 (IGF2), H19, small nuclear ribonucleoprotein polypeptide N (SNRPN) differentially methylated regions (DMRs) at the fetal stage, which in turn may be associated with sperm abnormalities. A total of 4 patient groups were recruited, namely, multifetal reduction following in vitro fertilization (IVF)/ intracytoplasmic sperm injection (ICSI; n = 56), multifetal reduction following controlled ovarian hyperstimulation (COH; n = 42), male patients with normal semen parameters denoted as normozoospermia group (NZ) for IVF (n = 36), and male patients presenting with asthenozoospermia (OAZ) for ICSI (n = 38). The expression levels and the DNA methylation status of IGF2H19 and SNRPN DMRs in the fetuses and the semen samples were evaluated by real-time quantitative polymerase chain reaction and pyrosequencing. In our results, the expression levels of H19 were significantly higher, whereas the methylation rates were lower in IVF-conceived fetuses compared to the control group (P <.05). Furthermore, higher methylation rates of IGF2 DMR2 and SNRPN DMR were detected both in IVF- and ICSI-conceived fetuses (P <.05). The data further indicated that the patients who presented with the majority of the CpG sites in the H19 DMR region that were lower methylated were those in the OAZ group. The results demonstrated that the epigenetic dysregulations of IGF2-H19 and SNRPN DMRs that were caused by ART were noted in the fetuses. Moreover, the present study suggested that epigenetic perturbations of the H19 DMR might be a key biomarker for spermatogenesis defects in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cedars MI. In vitro fertilization and risk of autistic disorder and mental retardation. JAMA. 2013;310(1):42–43.

    Article  CAS  PubMed  Google Scholar 

  2. El Hajj N, Haertle L, Dittrich M, et al. DNA methylation signatures in cord blood of ICSI children. Hum Reprod. 2017;32(8):1761–1769.

    Article  PubMed  PubMed Central  Google Scholar 

  3. James E, Jenkins TG. Epigenetics, infertility, and cancer: future directions. Fertil Steril. 2018;109(1):27–32.

    Article  PubMed  Google Scholar 

  4. Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update. 2015;21(4):555–557.

    Article  CAS  PubMed  Google Scholar 

  5. Vermeiden JP, Bernardus RE. Are imprinting disorders more prevalent after human in vitro fertilization or intracytoplasmicsperm injection? Fertil Steril. 2013;99(3):642–651.

    Article  PubMed  Google Scholar 

  6. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev. 2004;14(2):188–195.

    Article  CAS  PubMed  Google Scholar 

  7. Henckel A, Arnaud P. Genome-wide identification of new imprinted genes. Brief Funct Genomics. 2010;9(4):304–314.

    Article  CAS  PubMed  Google Scholar 

  8. Orstavik KH, Eiklid K, van der Hagen CB, et al. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmicsemen injection. Am J Hum Genet. 2003;72(1):218–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ludwig M, Katalinic A, Gross S, Sutcliffe A, Varon R, Horsthemke B. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet. 2005;42(4):289–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith—Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72(1):156–160.

    Article  CAS  PubMed  Google Scholar 

  11. Cassidy SB, Dykens E, Williams CA. Prader—Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet. 2000;97(2):136–146.

    Article  CAS  PubMed  Google Scholar 

  12. Kerjean A, Couvert P, Heams T, et al. In vitro follicular growth affects oocyte imprinting establishment in mice. Eur J Hum Genet. 2003;11(7):493–496.

    Article  CAS  PubMed  Google Scholar 

  13. de Waal E, Vrooman LA, Fischer E, et al. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum Mol Genet. 2015;24(24):6975–6985.

    PubMed  PubMed Central  Google Scholar 

  14. Le F, Wang LY, Wang N, et al. In vitro fertilization alters growth and expression of Igf2/H19 and their epigenetic mechanisms in the liver and skeletal muscle of newborn and elder mice. Biol Reprod. 2013;88(3):75.

    Article  PubMed  Google Scholar 

  15. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet. 2010;19(1):36–51.

    Article  CAS  PubMed  Google Scholar 

  16. Nelissen EC, Dumoulin JC, Daunay A, Evers JL, Tost J, van Montfoort AP. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the H19 and MEST differentially methylated regions. Hum Reprod. 2013;28(4):1117–1126.

    Article  CAS  PubMed  Google Scholar 

  17. Katari S, Turan N, Bibikova M, et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet. 2009;18(20):3769–3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whitelaw N, Bhattacharya S, Hoad G, Horgan GW, Hamilton M, Haggarty P. Epigenetic status in the offspring of spontaneous and assisted conception. Hum Reprod. 2014;29(7):1452–1458.

    Article  CAS  PubMed  Google Scholar 

  19. Lou H, Le F, Zheng Y, et al. Assisted reproductive technologies impair the expression and methylation of insulin-induced gene 1 and sterol regulatory element-binding factor 1 in the fetus and placenta. Fertil Steril. 2014;101(4):974–980.

    Article  CAS  PubMed  Google Scholar 

  20. Rubino P, Viganò P, Luddi A, Piomboni P. The ICSI procedure from past to future: a systematic review of the more controversial aspects. Hum Reprod Update. 2016;22(2):194–227.

    PubMed  Google Scholar 

  21. Boissonnas CC, Jouannet P, Jammes H. Epigenetic disorders and male subfertility. Fertil Steril. 2013;99(3):624–631.

    Article  CAS  PubMed  Google Scholar 

  22. Kitamura A, Miyauchi N, Hamada H, et al. Epigenetic alterations in sperm associated with male infertility. CongenitAnom (Kyoto). 2015;55(3):133–144.

    Article  Google Scholar 

  23. Jenkins TG, Aston KI, James ER, Carrell DT. Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications. Syst Biol Reprod Med. 2017;63(2):69–76.

    Article  PubMed  Google Scholar 

  24. Hart R, Norman RJ. The longer-term health outcomes for children born as a result of IVF treatment: part I—general health outcomes. Hum Reprod Update. 2013;19(3):232–243.

    Article  CAS  PubMed  Google Scholar 

  25. Haggarty P, Hoad G, Campbell DM, Horgan GW, Piyathilake C, McNeill G. Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. Am J Clin Nutr. 2013;97(1):94–99.

    Article  CAS  PubMed  Google Scholar 

  26. Ferguson-Smith AC, Surani MA. Imprinting and the epigenetic asymmetry between parental genomes. Science. 2001;293(5532):1086–1089.

    Article  CAS  PubMed  Google Scholar 

  27. Miozzo M, Simoni G. The role of imprinted genes in fetal growth. Biol Neonate. 2002;81(4):217–228.

    Article  CAS  PubMed  Google Scholar 

  28. Oliver VF, Miles HL, Cutfield WS, Hofman PL, Ludgate JL, Morison IM. Defects in imprinting and genome-wide DNA methylation are not common in the in vitro fertilization population. Fertil Steril. 2012;97(1):147–153.

    Article  CAS  PubMed  Google Scholar 

  29. Rancourt RC, Harris HR, Michels KB. Methylation levels at imprinting control regions are not altered with ovulation induction or in vitro fertilization in a birth cohort. Hum Reprod. 2012;27(7):2208–2216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tierling S, Souren NY, Gries J, et al. Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human. J Med Genet. 2010;47(6):371–376.

    Article  CAS  PubMed  Google Scholar 

  31. Ibala-Romdhane S, Al-Khtib M, Khoueiry R, Blachere T, Guerin JF, Lefevre A. Analysis of H19 methylation in control and abnormal human embryos, sperm and oocytes. Eur J Hum Genet. 2011;19(11):1138–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet. 2008;17(11):1653–1665.

    Article  CAS  PubMed  Google Scholar 

  33. Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet. 2008;17(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  34. Ito Y, Nativio R, Murrell A. Induced DNA demethylation can reshape chromatin topology at the IGF2-H19 locus. Nucleic Acids Res. 2013;41(10):5290–5302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94(5):1728–1733.

    Article  CAS  PubMed  Google Scholar 

  36. Marques CJ, Carvalho F, Sousa M, Barros A. Genomic imprinting in disruptive spermatogenesis. Lancet. 2004;363(9422):1700–1702.

    Article  CAS  PubMed  Google Scholar 

  37. Chen SL, Shi XY, Zheng HY, Wu FR, Luo C. Aberrant DNA methylation of imprinted H19 gene in human preimplantation embryos. Fertil Steril. 2010;94(6):2356–2358.

    Article  CAS  PubMed  Google Scholar 

  38. Sikka SC, Hellstrom WJ. Current updates on laboratory techniques for the diagnosis of male reproductive failure. Asian J Androl. 2016;18(3):392–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aston KI, Punj V, Liu L, Carrell DT. Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis. Fertil Steril. 2011;97(2):285–292.

    Article  PubMed  Google Scholar 

  40. Scheutte B, El Hajj N, Kuhtz J, et al. Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction. Andrology. 2013;1(6):822–829.

    Article  Google Scholar 

  41. Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 2014;10(7):e1004458.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Jin MD.

Additional information

Authors’ Note

Hangying Lou and Fang Le are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, H., Le, F., Hu, M. et al. Aberrant DNA Methylation of IGF2-H19 Locus in Human Fetus and in Spermatozoa From Assisted Reproductive Technologies. Reprod. Sci. 26, 997–1004 (2019). https://doi.org/10.1177/1933719118802052

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118802052

Keywords

Navigation