Skip to main content

Advertisement

Log in

Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

A Correction to this article was published on 01 September 2021

This article has been updated

Abstract

To date, the use of immune checkpoint inhibitors has proven largely ineffective in patients with advanced pancreatic ductal adenocarcinoma. A combination of low tumor antigenicity, deficits in immune activation along with an exclusive and suppressive tumor microenvironment result in resistance to host defensives. However, a deepening understanding of these immune escape and suppressive mechanisms has led to the discovery of novel molecular targets and treatment strategies that may hold the key to a long-awaited therapeutic breakthrough. In this review, we describe the tumor-intrinsic and microenvironmental barriers to modern immunotherapy, examine novel immune-based and targeted modalities, summarize relevant pre-clinical findings and human experience, and, finally, discuss novel synergistic approaches to overcome immune-resistance in pancreatic cancer. Beyond checkpoint inhibition, immune agonists and anti-tumor vaccines represent promising strategies to stimulate host response via activation and expansion of anti-tumor immune effectors. Off-the-shelf natural killer cell therapies may offer an effective method for bypassing downregulated tumor antigen presentation. In parallel with this, sophisticated targeting of crosstalk between tumor and tumor-associated immune cells may lead to enhanced immune infiltration and survival of anti-tumor lymphocytes. A future multimodal treatment strategy involving immune priming/activation, tumor microenvironment reprogramming, and immune checkpoint blockade may help transform pancreatic cancer into an immunogenic tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Rahib, L., Wehner, M. R., Matrisian, L. M., & Nead, K. T. (2021). Estimated projection of US cancer incidence and death to 2040. JAMA Network Open, 4(4), e214708. https://doi.org/10.1001/jamanetworkopen.2021.4708 Accessed 4/11/2021.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.21492. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  3. Sohal, D.P.S., Kennedy, E.B., Cinar, P., et al., (2020) Metastatic pancreatic cancer: ASCO guideline Update, Jco, JCO.20.01364. https://doi.org/10.1200/JCO.20.01364.

  4. Conroy, T., Desseigne, F., Ychou, M., et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England Journal of Medicine., 364(19), 1817–1825. https://search.datacite.org/works/10.1056/nejmoa1011923. https://doi.org/10.1056/nejmoa1011923.

    Article  CAS  PubMed  Google Scholar 

  5. Von Hoff, D. D., Ervin, T., Arena, F. P., et al. (2013). Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. The New England Journal of Medicine., 369(18), 1691–1703. https://doi.org/10.1056/NEJMoa1304369.

    Article  CAS  Google Scholar 

  6. Conroy, T., Hammel, P., Hebbar, M., et al. (2018). FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. The New England Journal of Medicine., 379(25), 2395–2406. https://doi.org/10.1056/NEJMoa1809775.

    Article  CAS  PubMed  Google Scholar 

  7. Hu, Z. I., Shia, J., Stadler, Z. K., et al. (2018). Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: Challenges and recommendations. Clinical Cancer Research, 24(6), 1326–1336. https://www.ncbi.nlm.nih.gov/pubmed/29367431. https://doi.org/10.1158/1078-0432.CCR-17-3099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Le, D. T., Durham, J. N., Smith, K. N., et al. (2017). Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science (American Association for the Advancement of Science)., 357(6349), 409–413. https://search.datacite.org/works/10.1126/science.aan6733. https://doi.org/10.1126/science.aan6733.

    Article  CAS  Google Scholar 

  9. Buchbinder, E. I., & Desai, A. (2016). CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. American Journal of Clinical Oncology, 39(1), 98–106. https://www.ncbi.nlm.nih.gov/pubmed/26558876. https://doi.org/10.1097/coc.0000000000000239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kataoka, K., Shiraishi, Y., Takeda, Y., et al. (2016). Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature (London), 534(7607), 402–406. https://www.ncbi.nlm.nih.gov/pubmed/27281199. https://doi.org/10.1038/nature18294.

    Article  CAS  Google Scholar 

  11. Yamaki, S., Yanagimoto, H., Tsuta, K., Ryota, H., & Kon, M. (2017). PD-L1 expression in pancreatic ductal adenocarcinoma is a poor prognostic factor in patients with high CD8+ tumor-infiltrating lymphocytes: Highly sensitive detection using phosphor-integrated dot staining. International Journal of Clinical Oncology, 22(4), 726–733. https://www.ncbi.nlm.nih.gov/pubmed/28314962. https://doi.org/10.1007/s10147-017-1112-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knudsen, E. S., Vail, P., Balaji, U., et al. (2017). Stratification of pancreatic ductal adenocarcinoma: Combinatorial genetic, stromal, and immunologic markers. Clinical Cancer Research, 23(15), 4429–4440. https://www.ncbi.nlm.nih.gov/pubmed/28348045. https://doi.org/10.1158/1078-0432.CCR-17-0162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Royal, R. E., Levy, C., Rosenberg, S. A., et al. (2010). Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. Journal of Immunotherapy (1997), 33(8), 828–833. https://www.ncbi.nlm.nih.gov/pubmed/20842054. https://doi.org/10.1097/CJI.0b013e3181eec14c.

    Article  CAS  Google Scholar 

  14. Sharma, P., Dirix, L., De Vos, F., Leon, Y. F., et al. (2018). Efficacy and tolerability of tremelimumab in patients with metastatic pancreatic ductal adenocarcinoma. Journal of Clinical Oncology, 36(4_suppl), 470. https://doi.org/10.1200/JCO.2018.36.4_suppl.470.

    Article  Google Scholar 

  15. Kamath, S. D., Kalyan, A., Kircher, S., et al. (2020). Ipilimumab and gemcitabine for advanced pancreatic cancer: A phase Ib study. The Oncologist (Dayton, Ohio), 25(5), e808–e815. https://onlinelibrary.wiley.com/doi/abs/10.1634/theoncologist.2019-0473. https://doi.org/10.1634/theoncologist.2019-0473.

    Article  CAS  Google Scholar 

  16. Brahmer, J. R., Tykodi, S. S., Chow, L. Q. M., et al. (2012). Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. The New England Journal of Medicine, 366(26), 2455–2465. https://doi.org/10.1056/NEJMoa1200694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Reilly, E. M., Oh, D., Dhani, N., et al. (2019). Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncology, 5(10), 1431–1438. https://doi.org/10.1001/jamaoncol.2019.1588.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Terrero, G., Pollack, T., Sussman, D. A., Lockhart, A. C., & Hosein, P. J. (2020). Exceptional responses to ipilimumab/nivolumab (Ipi/Nivo) in patients (Pts) with refractory pancreatic ductal adenocarcinoma (PDAC) and germline BRCA or RAD51 mutations. Jco., 38(4), 754. https://doi.org/10.1200/JCO.2020.38.4_suppl.754.

    Article  Google Scholar 

  19. Marabelle, A., Le, D. T., Ascierto, P. A., et al. (2020). Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatchrepair–deficient cancer: Results from the phase II KEYNOTE-158 study. Jco., 38(1), 1–10. https://doi.org/10.1200/JCO.19.02105.

    Article  CAS  Google Scholar 

  20. Van Lint, S., van Nuffel, A.M., Wilgenhof, S., et al. (2013) Priming of cytotoxic T lymphocyte responses by dendritic cells: induction of potent anti-tumor immune responses. Priming of cytotoxic T lymphocyte responses by dendritic cells: induction of potent anti-tumor immune responses. Nova Science.

  21. Katz, S. G., & Rabinovich, P. M. (2020). T cell reprogramming against cancer. Methods in Molecular Biology, 2097, 3–44. https://pubmed.ncbi.nlm.nih.gov/31776916https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063988/. https://doi.org/10.1007/978-1-0716-0203-4_1.

  22. Zamora, A. E., Crawford, J. C., & Thomas, P. G. (2018). Hitting the target: How T cells detect and eliminate tumors. The Journal of Immunology (1950), 200(2), 392–399. https://www.ncbi.nlm.nih.gov/pubmed/29311380. https://doi.org/10.4049/jimmunol.1701413.

    Article  CAS  Google Scholar 

  23. Yarchoan, M., Burles 3rd, A. J., Lutz, E. R., Laheru, D. A., & Jaffee, E. M. (2017). Targeting neoantigens to augment antitumour immunity. Nature Reviews. Cancer, 17(4), 209–222. https://www.ncbi.nlm.nih.gov/pubmed/28233802. https://doi.org/10.1038/nrc.2016.154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yarchoan, M., Hopkins, A., & Jaffee, E. M. (2017). Tumor mutational burden and response rate to PD-1 inhibition. The New England Journal of Medicine., 377(25), 2500–2501. https://doi.org/10.1056/NEJMc1713444.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Szeto, C., Gounder, M. M., Parulkar, R., Nguyen, A., Rabizadeh, S., & Reddy, S. K. (2020). High correlation between TMB, expressed TMB, and neoantigen load using tumor: Normal whole exome DNA and matched whole transcriptome RNA sequencing. Jco., 38(15), e15238. https://doi.org/10.1200/JCO.2020.38.15_suppl.e15238.

    Article  Google Scholar 

  26. Wood, M. A., Weeder, B. R., David, J. K., Nellore, A., & Thompson, R. F. (2020). Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival. Genome Medicine, 12(1), 33. https://www.ncbi.nlm.nih.gov/pubmed/32228719. https://doi.org/10.1186/s13073-020-00729-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balachandran, V. P., Luksza, M., Zhao, J. N., et al. (2017). Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature., 551, 512–516. https://doi.org/10.1038/nature24462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Balachandran, V. P., Łuksza, M., Zhao, J. N., et al. (2017). Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature (London), 551(7681), 512–516. https://search.datacite.org/works/10.1038/nature24462. https://doi.org/10.1038/nature24462.

    Article  CAS  Google Scholar 

  29. Craig, D. J., Nanavaty, N. S., Devanaboyina, M., et al. (2021). The abscopal effect of radiation therapy. Future Oncology (London, England), 17(13), 1683–1694. https://doi.org/10.2217/fon-2020-0994.

    Article  CAS  Google Scholar 

  30. Reits, E. A., Hodge, J. W., Herberts, C. A., et al. (2006). Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. The Journal of Experimental Medicine., 203(5), 1259–1271. https://www.narcis.nl/publication/RecordID/oai:pure.amc.nl:publications%2F47bd0662-ffa3-4794-9962-f1c3eb685fd9. https://doi.org/10.1084/jem.20052494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ngwa, W., Irabor, O. C., Schoenfeld, J. D., Hesser, J., Demaria, S., & Formenti, S. C. (2018). Using immunotherapy to boost the abscopal effect. Nature Reviews. Cancer, 18(5), 313–322. https://www.ncbi.nlm.nih.gov/pubmed/29449659. https://doi.org/10.1038/nrc.2018.6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dovedi, S. J., Cheadle, E. J., Popple, A. L., et al. (2017). Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clinical Cancer Research, 23(18), 5514–5526. https://www.ncbi.nlm.nih.gov/pubmed/28533222. https://doi.org/10.1158/1078-0432.CCR-16-1673.

    Article  CAS  PubMed  Google Scholar 

  33. Rudqvist, N., Pilones, K. A., Lhuillier, C., et al. (2018). Radiotherapy and CTLA-4 blockade shape the TCR repertoire of tumor-infiltrating T cells. Cancer Immunology Research, 6(2), 139–150. https://www.ncbi.nlm.nih.gov/pubmed/29180535. https://doi.org/10.1158/2326-6066.CIR-17-0134.

    Article  CAS  PubMed  Google Scholar 

  34. Twyman-Saint Victor, C., Rech, A. J., Maity, A., et al. (2015). Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature (London), 520(7547), 373–377. https://www.ncbi.nlm.nih.gov/pubmed/25754329. https://doi.org/10.1038/nature14292.

    Article  CAS  Google Scholar 

  35. Parikh, A., Wo, J. Y., Ryan, D. P., et al. (2019). A phase II study of ipilimumab and nivolumab with radiation in metastatic pancreatic adenocarcinoma. Journal of Clinical Oncology, 37(4_suppl), 391. https://doi.org/10.1200/JCO.2019.37.4_suppl.391.

    Article  Google Scholar 

  36. Perkhofer, L., Gout, J., Roger, E., et al. (2021). DNA damage repair as a target in pancreatic cancer: State-of-the-art and future perspectives. Gut., 70(3), 606–617. https://doi.org/10.1136/gutjnl-2019-319984.

    Article  CAS  PubMed  Google Scholar 

  37. Wong, W., Raufi, A. G., Safyan, R. A., Bates, S. E., & Manji, G. A. (2020). BRCA Mutations in pancreas cancer: Spectrum, current management, challenges and future prospects. Cancer Management and Research, 12, 2731–2742. https://www.ncbi.nlm.nih.gov/pubmed/32368150. https://doi.org/10.2147/CMAR.S211151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Golan, T., Hammel, P., Reni, M., et al. (2019). Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. The New England Journal of Medicine., 381(4), 317–327. https://doi.org/10.1056/NEJMoa1903387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vikas, P., Borcherding, N., Chennamadhavuni, A., & Garje, R. (2020). Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Frontiers in Oncology, 10, 570. https://www.ncbi.nlm.nih.gov/pubmed/32457830. https://doi.org/10.3389/fonc.2020.00570.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jiao, S., Xia, W., Yamaguchi, H., et al. (2017). PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clinical Cancer Research, 23(14), 3711–3720. https://www.ncbi.nlm.nih.gov/pubmed/28167507. https://doi.org/10.1158/1078-0432.CCR-16-3215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Higuchi, T., Flies, D. B., Marjon, N. A., et al. (2015). CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunology Research, 3(11), 1257–1268. https://www.ncbi.nlm.nih.gov/pubmed/26138335. https://doi.org/10.1158/2326-6066.CIR-15-0044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robillard, L., Nguyen, M., Loehr, A., et al. (2017). Abstract 3650: Preclinical evaluation of the PARP inhibitor rucaparib in combination with PD-1 and PD-L1 inhibition in a syngeneic BRCA1 mutant ovarian cancer model. Cancer Research (Chicago, Ill.), 77(13 Supplement), 3650. https://doi.org/10.1158/1538-7445.AM2017-3650.

    Article  Google Scholar 

  43. Prevo, R., Fokas, E., Reaper, P. M., et al. (2012). The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biology & Therapy, 13(11), 1072–1081. http://www.tandfonline.com/doi/abs/10.4161/cbt.21093. https://doi.org/10.4161/cbt.21093.

    Article  CAS  Google Scholar 

  44. Sheng, H., Huang, Y., Xiao, Y., et al. (2020). ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma. Journal for Immunotherapy of Cancer, 8(1), e000340. https://doi.org/10.1136/jitc-2019-000340.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wengner, A. M., Siemeister, G., Luecking, U., et al. (2018). Abstract 321: Synergistic activity of the ATR inhibitor BAY 1895344 in combination with DNA damage inducing and DNA repair compromising therapies in preclinical tumor models. Cancer Research (Chicago, Ill.), 78(13 Supplement), 321. https://doi.org/10.1158/1538-7445.AM2018-321.

    Article  Google Scholar 

  46. Zhang, Q., Green, M. D., Lang, X., et al. (2019). Inhibition of ATM increases interferon signaling and sensitizes pancreatic cancer to immune checkpoint blockade therapy. Cancer Research (Chicago, Ill.), 79(15), 3940–3951. https://www.ncbi.nlm.nih.gov/pubmed/31101760. https://doi.org/10.1158/0008-5472.CAN-19-0761.

    Article  CAS  Google Scholar 

  47. Luo, W., Yang, G., Luo, W., et al. (2020). Novel therapeutic strategies and perspectives for metastatic pancreatic cancer: Vaccine therapy is more than just a theory. Cancer Cell International, 20(1), 66. https://www.ncbi.nlm.nih.gov/pubmed/32158356. https://doi.org/10.1186/s12935-020-1147-9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lutz, E., Yeo, C. J., Onners, B., et al. (2011). A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A phase II trial of safety, efficacy, and immune activation. Annals of Surgery, 253(2), 328–335. https://www.ncbi.nlm.nih.gov/pubmed/21217520. https://doi.org/10.1097/SLA.0b013e3181fd271c.

    Article  PubMed  Google Scholar 

  49. Le, D. T., Brockstedt, D. G., Giedlin, M., et al. (2012). A live-attenuated listeria vaccine (ANZ-100) and a live-attenuated listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: Phase I studies of safety and immune induction. Clinical Cancer Research, 18(3), 858–868. https://www.ncbi.nlm.nih.gov/pubmed/22147941. https://doi.org/10.1158/1078-0432.CCR-11-2121.

    Article  CAS  PubMed  Google Scholar 

  50. Bernhardt, S. L., Gjertsen, M. K., Trachsel, S., et al. (2006). Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I II study. British Journal of Cancer, 95(11), 1474–1482. https://doi.org/10.1038/sj.bjc.6603437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, A., Jaffee, E., & Lee, V. (2019). Current status of immunotherapies for treating pancreatic cancer. Current Oncology Reports, 21(7), 1–11. https://www.ncbi.nlm.nih.gov/pubmed/31101991. https://doi.org/10.1007/s11912-019-0811-5.

    Article  Google Scholar 

  52. Hassan, R., Thomas, A., Alewine, C., Le, D. T., Jaffee, E. M., & Pastan, I. (2016). Mesothelin immunotherapy for cancer: Ready for prime time? Journal of Clinical Oncology, 34(34), 4171–4179. https://www.ncbi.nlm.nih.gov/pubmed/27863199. https://doi.org/10.1200/JCO.2016.68.3672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shimizu, A., Hirono, S., Tani, M., et al. (2012). Coexpression of MUC16 and mesothelin is related to the invasion process in pancreatic ductal adenocarcinoma. Cancer Science, 103(4), 739–746. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1349-7006.2012.02214.x. https://doi.org/10.1111/j.1349-7006.2012.02214.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Le, D. T., Wang-Gillam, A., Picozzi, V., et al. (2015). Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. Journal of Clinical Oncology, 33(12), 1325–1333. https://www.ncbi.nlm.nih.gov/pubmed/25584002. https://doi.org/10.1200/JCO.2014.57.4244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Le, D. T., Picozzi, V. J., Ko, A. H., et al. (2019). Results from a Phase IIb, Randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE Study). Clinical Cancer Research, 25(18), 5493–5502. https://www.ncbi.nlm.nih.gov/pubmed/31126960. https://doi.org/10.1158/1078-0432.CCR-18-2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lutz, E. R., Wu, A. A., Bigelow, E., et al. (2014). Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunology Research, 2(7), 616–631. https://search.datacite.org/works/10.1158/2326-6066.cir-14-0027. https://doi.org/10.1158/2326-6066.cir-14-0027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Le, D. T., Lutz, E., Uram, J. N., et al. (2013). Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. Journal of Immunotherapy (1997), 36(7), 382–389. https://www.ncbi.nlm.nih.gov/pubmed/23924790. https://doi.org/10.1097/CJI.0b013e31829fb7a2.

    Article  CAS  PubMed Central  Google Scholar 

  58. Tsujikawa, T., Crocenzi, T., Durham, J. N., et al. (2020). Evaluation of cyclophosphamide/GVAX pancreas followed by Listeria-mesothelin(CRS-207) with or without nivolumab in patients with pancreatic cancer. Clinical Cancer Research, 26(14), 3578–3588. https://www.ncbi.nlm.nih.gov/pubmed/32273276. https://doi.org/10.1158/1078-0432.CCR-19-3978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng, L., Judkins, C., Hoare, J., et al. (2020). 812 Urelumab (anti-CD137 Agonist) in Combination with vaccine and nivolumab treatments is safe and associated with pathologic response as neoadjuvant and adjuvant therapy for resectable pancreatic cancer. Journal for Immunotherapy of Cancer, 8(Suppl 3), A862. https://doi.org/10.1136/jitc-2020-SITC2020.0812.

    Article  Google Scholar 

  60. Lepisto, A. J., Moser, A. J., Zeh, H., et al. (2008). A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Therapy., 6(B), 955–964https://www.ncbi.nlm.nih.gov/pubmed/19129927.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gatti-Mays, M. E., Strauss, J., Donahue, R. N., et al. (2019). A phase I dose-escalation trial of BN-CV301, a recombinant poxviral vaccine targeting MUC1 and CEA with costimulatory molecules. Clinical Cancer Research, 25(16), 4933–4944. https://www.ncbi.nlm.nih.gov/pubmed/31110074. https://doi.org/10.1158/1078-0432.CCR-19-0183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Suzuki, N., Hazama, S., Iguchi, H., et al. (2017). Phase II clinical trial of peptide cocktail therapy for patients with advanced pancreatic cancer: VENUS-PC study. Cancer Science, 108(1), 73–80. https://onlinelibrary.wiley.com/doi/abs/10.1111/cas.13113. https://doi.org/10.1111/cas.13113.

    Article  CAS  PubMed  Google Scholar 

  63. Middleton, G. (2014). Prof, Silcocks P, BMBCh, Cox T, PhD, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised, phase 3 trial. The Lancet Oncology., 15(8), 829–840. https://www.clinicalkey.es/playcontent/1-s2.0-S1470204514702360. https://doi.org/10.1016/S1470-2045(14)70236-0.

    Article  CAS  PubMed  Google Scholar 

  64. Mirandola, L., Chiriva-Internati, M., Bresalier, R., Marincola, F. M., Figueroa, J. A., & Dahlbeck, S. (2019). Preliminary report of a novel formulation of clinical-grade, fully matured, tumor-associated peptide-loaded dendritic cells for cancer immunotherapy. Translational Medicine Communications., 4(1), 1–10. https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::cd3fa7e5e8d0a2fdac3aae255cd6d281. https://doi.org/10.1186/s41231-019-0049-0.

    Article  Google Scholar 

  65. Peng, M., Mo, Y., Wang, Y., et al. (2019). Neoantigen vaccine: An emerging tumor immunotherapy. Molecular Cancer, 18(1), 128. https://search.datacite.org/works/10.1186/s12943-019-1055-6. https://doi.org/10.1186/s12943-019-1055-6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of mhc antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48(W1), W449–W454. https://www.ncbi.nlm.nih.gov/pubmed/32406916. https://doi.org/10.1093/nar/gkaa379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ott, P. A., Hu, Z., Keskin, D. B., et al. (2017). An immunogenic personal neoantigen vaccine for patients with melanoma. Nature (London), 547(7662), 217–221. https://search.datacite.org/works/10.1038/nature22991. https://doi.org/10.1038/nature22991.

    Article  CAS  Google Scholar 

  68. Hilf, N., Kuttruff-Coqui, S., Frenzel, K., et al. (2018). Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature (London), 565(7738), 240–245. https://search.datacite.org/works/10.1038/s41586-018-0810-y. https://doi.org/10.1038/s41586-018-0810-y.

    Article  CAS  Google Scholar 

  69. Keskin, D. B., Anandappa, A. J., Sun, J., et al. (2018). Neoantigen vaccine generates intratumoral T Cell responses in phase Ib glioblastoma trial. Nature (London), 565(7738), 234–239. https://search.datacite.org/works/10.1038/s41586-018-0792-9. https://doi.org/10.1038/s41586-018-0792-9.

    Article  CAS  Google Scholar 

  70. Fang, Y., Mo, F., Shou, J., et al. A pan-cancer clinical study of personalized neoantigen vaccine monotherapy in treating patients with various types of advanced solid tumors. Clinical Cancer Research. 2020:clincanres.2881.2019. https://www.ncbi.nlm.nih.gov/pubmed/32439700. https://doi.org/10.1158/1078-0432.CCR-19-2881.

  71. Cohen, R. B., Twardowski, P., Johnson, M. L., et al. (2020). GEN-009, a neoantigen vaccine containing ATLAS selected neoantigens, to generate broad sustained immunity against immunogenic tumor mutations and avoid inhibitory peptides. Journal of Clinical Oncology, 38(15_suppl), 3107. https://doi.org/10.1200/JCO.2020.38.15_suppl.3107.

    Article  Google Scholar 

  72. Mueller, S., Taitt, J. M., Villanueva-Meyer, J. E., et al. (2020). Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. The Journal of Clinical Investigation., 130(12), 6325–6337. https://www.ncbi.nlm.nih.gov/pubmed/32817593. https://doi.org/10.1172/JCI140378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ott, P. A., Hu-Lieskovan, S., Chmielowski, B., et al. (2020). A Phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell (Cambridge), 183(2), 347–362.e24. https://doi.org/10.1016/j.cell.2020.08.053.

    Article  CAS  Google Scholar 

  74. Kinkead, H.L., Hopkins, A., Lutz, E., et al. (2018) Combining STING-based neoantigen-targeted vaccine with checkpoint modulators enhances antitumor immunity in murine pancreatic cancer. JCI Insight, 3(20). https://search.datacite.org/works/10.1172/jci.insight.122857. https://doi.org/10.1172/jci.insight.122857.

  75. Ryschich, E., Nötzel, T., Hinz, U., et al. (2005). Control of T-cell–mediated immune response by HLA class I in human pancreatic carcinoma. Clinical Cancer Research, 11(2), 498–504http://clincancerres.aacrjournals.org/content/11/2/498.abstract.

    CAS  PubMed  Google Scholar 

  76. Yamamoto, K., Venida, A., Yano, J., et al. (2020). Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature (London), 581(7806), 100–105. https://www.ncbi.nlm.nih.gov/pubmed/32376951. https://doi.org/10.1038/s41586-020-2229-5.

    Article  CAS  Google Scholar 

  77. Mukhopadhyay, S., Biancur, D. E., Parker, S. J., et al. (2021). Autophagy is required for proper cysteine homeostasis in pancreatic cancer through regulation of SLC7A11. Proceedings of the National Academy of Sciences - PNAS., 118(6), e2021475118. https://www.ncbi.nlm.nih.gov/pubmed/33531365. https://doi.org/10.1073/pnas.2021475118.

    Article  CAS  Google Scholar 

  78. Wabitsch, S., McVey, J. C., Ma, C., et al. (2021). Hydroxychloroquine can impair tumor response to anti-PD1 in subcutaneous mouse models. iScience, 24(1), 101990. https://doi.org/10.1016/j.isci.2020.101990.

    Article  CAS  PubMed  Google Scholar 

  79. Wolpin, B. M., Rubinson, D. A., Wang, X., et al. (2014). Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. The Oncologist (Dayton, Ohio), 19(6), 637–638. https://onlinelibrary.wiley.com/doi/abs/10.1634/theoncologist.2014-0086. https://doi.org/10.1634/theoncologist.2014-0086.

    Article  Google Scholar 

  80. Karasic, T. B., O’Hara, M. H., Loaiza-Bonilla, A., et al. (2019). Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: A phase 2 randomized clinical trial. JAMA Oncology, 5(7), 993–998. https://doi.org/10.1001/jamaoncol.2019.0684.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Samaras, P., Tusup, M., Nguyen-Kim, T., et al. (2017). Phase I Study of a chloroquine–gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemotherapy and Pharmacology, 80(5), 1005–1012. https://www.ncbi.nlm.nih.gov/pubmed/28980060. https://doi.org/10.1007/s00280-017-3446-y.

    Article  CAS  PubMed  Google Scholar 

  82. Yang, A., Herter-Sprie, G., Zhang, H., et al. (2018). Autophagy sustains pancreatic cancer growth through both cell autonomous and non-autonomous mechanisms. Cancer Discovery, 8(3), 276–287.

    Article  CAS  Google Scholar 

  83. Piffoux, M., Eriau, E., & Cassier, P. A. (2021). Autophagy as a therapeutic target in pancreatic cancer. British Journal of Cancer, 124(2), 333–344. https://www.ncbi.nlm.nih.gov/pubmed/32929194. https://doi.org/10.1038/s41416-020-01039-5.

    Article  PubMed  Google Scholar 

  84. Bryant, K. L., Stalnecker, C. A., Zeitouni, D., et al. (2019). Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nature Medicine, 25(4), 628–640. https://www.ncbi.nlm.nih.gov/pubmed/30833752. https://doi.org/10.1038/s41591-019-0368-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Seton-Rogers, S. (2019). Eliminating protective autophagy in KRAS-mutant cancers. Nature Reviews. Cancer, 19(5), 247. https://www.ncbi.nlm.nih.gov/pubmed/30936466. https://doi.org/10.1038/s41568-019-0137-5.

    Article  CAS  PubMed  Google Scholar 

  86. Raufi, A., Wong, W., Lee, S. M., & Manji, G. A. (2021). MEKiAUTO: A phase I/IIopen-label study of combination therapy with the MEK inhibitor cobimetinib, immune-checkpoint blockade with atezolizumab, and the AUTOphagy inhibitor hydroxychloroquine in KRAS-mutated advanced malignancies. JCO., 39(3), TPS450. https://doi.org/10.1200/JCO.2021.39.3_suppl.TPS450.

    Article  Google Scholar 

  87. Hong, D. S., Fakih, M. G., Strickler, J. H., et al. (2020). KRAS G12C Inhibition with sotorasib in advanced solid tumors. The New England Journal of Medicine., 383(13), 1207 https://www.ncbi.nlm.nih.gov/pubmed/32955176.

    Article  CAS  Google Scholar 

  88. Li, B., Skoulidis, F., Falchook, G., et al. (2021). PS01.07 Registrational phase 2 trial of sotorasib in KRAS P.G12C mutant NSCLC: First disclosure of the codebreak 100 primary analysis. Journal of Thoracic Oncology, 16(3), S61. https://doi.org/10.1016/j.jtho.2021.01.321.

    Article  Google Scholar 

  89. Fakih, M., Durm, G. A., Govindan, R., et al. (2020). Trial in progress: A phase Ib study of AMG 510, a specific and irreversible KRASG12C inhibitor, in combination with Other anticancer therapies in patients with advanced solid tumors harboring KRAS P.G12C mutation (CodeBreak 101). JCO, 38(15), TPS3661. https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS3661.

    Article  Google Scholar 

  90. Peng, Y., Zhang, J., Liang, W., et al. (2014). Elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates natural killer cell dysfunction. BMC Cancer, 14(1), 738. https://www.ncbi.nlm.nih.gov/pubmed/25274283. https://doi.org/10.1186/1471-2407-14-738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jun, E., Song, A. Y., Choi, J., et al. (2019). Progressive impairment of NK Cell cytotoxic degranulation is associated with TGF-Β1 deregulation and disease progression in pancreatic cancer. Frontiers in Immunology, 10, 1354. https://www.ncbi.nlm.nih.gov/pubmed/31281312. https://doi.org/10.3389/fimmu.2019.01354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Peng, Y., Xi, C., Zhu, Y., et al. (2016). Altered expression of CD226 and CD96 on natural killer cells in patients with pancreatic cancer. Oncotarget, 7(41), 66586–66594. https://www.ncbi.nlm.nih.gov/pubmed/27626490. https://doi.org/10.18632/oncotarget.11953.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lim, S. A., Kim, J., Jeon, S., et al. (2019). Defective localization with impaired tumor cytotoxicity contributes to the immune escape of NK cells in pancreatic cancer patients. Frontiers in Immunology, 10, 496. https://www.ncbi.nlm.nih.gov/pubmed/31024520. https://doi.org/10.3389/fimmu.2019.00496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Peng, Y., Zhu, Y., Zhang, J., et al. (2013). Comprehensive analysis of the percentage of surface receptors and cytotoxic granules positive natural killer cells in patients with pancreatic cancer, gastric cancer, and colorectal cancer. Journal of Translational Medicine, 11(1), 262. https://www.ncbi.nlm.nih.gov/pubmed/24138752. https://doi.org/10.1186/1479-5876-11-262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Freeman, A. J., Vervoort, S. J., Ramsbottom, K. M., et al. (2019). Natural killer cells suppress T cell-associated tumor immune evasion. Cell Reports (Cambridge), 28(11), 2784–2794.e5. https://doi.org/10.1016/j.celrep.2019.08.017.

    Article  CAS  Google Scholar 

  96. Lee, J., Kang, T. H., Yoo, W., et al. (2019). An antibody designed to improve adoptive NK-cell therapy inhibits pancreatic cancer progression in a murine model. Cancer Immunology Research, 7(2), 219–229. https://www.ncbi.nlm.nih.gov/pubmed/30514792. https://doi.org/10.1158/2326-6066.CIR-18-0317.

    Article  CAS  PubMed  Google Scholar 

  97. Segal, N. H., Infante, J. R., Sanborn, R. E., et al. (2016). Safety of the natural killer (NK)cell-targeted anti-KIR antibody, lirilumab (Liri), in combination with nivolumab (Nivo) or ipilimumab (Ipi) in two phase 1 studies in advanced refractory solid tumors. Annals of Oncology, 27, vi372. https://doi.org/10.1093/annonc/mdw378.40.

    Article  Google Scholar 

  98. Wainberg, Z. A., Diamond, J. R., Curigliano, G., et al. (2020). First-line durvalumab + monalizumab, mFOLFOX6, and bevacizumab or cetuximab for metastatic microsatellite-stable colorectal cancer (MSS-CRC). JCO, 38(4), 128. https://doi.org/10.1200/JCO.2020.38.4_suppl.128.

    Article  Google Scholar 

  99. Seery, T. E., Kistler, M., Nangia, C. S., et al. (2020). Immunotherapy combining NK and T cell activation with IL-15 super agonist (N-803), off-the-shelfhigh-affinity CD16 NK (haNK) or PDL1 targeted haNK and checkpoint inhibitor in relapsed/refractory advanced pancreatic cancer. Journal of Clinical Oncology, 38(15_suppl), e15015. https://doi.org/10.1200/JCO.2020.38.15_suppl.e15015.

    Article  Google Scholar 

  100. Seery, T. E., Nangia, C. S., Sender, L. S., Reddy, S. K., & Soon-Shiong, P. (2021). Trial in progress: Open-label, randomized, comparative phase 2/3 study of combination immunotherapy plus standard-of-care chemotherapy and SBRT versus standard-of-care chemotherapy for the treatment of locally advanced or metastatic pancreatic cancer. JCO., 39(15), TPS4174. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS4174.

    Article  Google Scholar 

  101. Hegde, S., Krisnawan, V. E., Herzog, B. H., et al. (2020). Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell, 37(3), 289–307.e9. https://doi.org/10.1016/j.ccell.2020.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. DeVito, N. C., Plebanek, M. P., Theivanthiran, B., & Hanks, B. A. (2019). Role of tumor-mediated dendritic cell tolerization in immune evasion. Frontiers in Immunology, 10, 2876. https://www.ncbi.nlm.nih.gov/pubmed/31921140. https://doi.org/10.3389/fimmu.2019.02876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Beatty, G. L., Chiorean, E. G., Torigian, D. A., et al. (2011). CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science (American Association for the Advancement of Science)., 331(6024), 1612–1616. https://www.jstor.org/stable/29783936. https://doi.org/10.1126/science.1198443.

    Article  CAS  Google Scholar 

  104. Ma, H. S., Poudel, B., Torres, E. R., et al. (2019). A CD40 agonist and PD-1 antagonist antibody reprogram the microenvironment of nonimmunogenic tumors to allow T-cell–mediated anticancer activity. Cancer Immunology Research, 7(3), 428–442. https://www.ncbi.nlm.nih.gov/pubmed/30642833. https://doi.org/10.1158/2326-6066.CIR-18-0061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Morrison, A. H., Diamond, M. S., Hay, C. A., Byrne, K. T., & Vonderheide, R. H. (2020). Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity. Proceedings of the National Academy of Sciences - PNAS., 117(14), 8022–8031. https://www.ncbi.nlm.nih.gov/pubmed/32213589. https://doi.org/10.1073/pnas.1918971117.

    Article  CAS  Google Scholar 

  106. Soong, R., Song, L., Trieu, J., et al. (2014). Direct T cell activation via CD40 ligand generates high avidity CD8+ T cells capable of breaking immunological tolerance for the control of tumors. PLoS One, 9(3), e93162. https://www.ncbi.nlm.nih.gov/pubmed/24664420. https://doi.org/10.1371/journal.pone.0093162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., et al. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: A phase I/II trial. Journal of Clinical Oncology, 29(34), 4548–4554. http://jco.ascopubs.org/content/29/34/4548.abstract. https://doi.org/10.1200/JCO.2011.36.5742.

    Article  CAS  Google Scholar 

  108. O’Hara, M. H., O'Reilly, E. M., Varadhachary, G., et al. (2021). CD40 agonistic monoclonal antibody APX005M (Sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: An open-label, multicentre, phase 1b study. The Lancet Oncology., 22(1), 118–131. https://doi.org/10.1016/S1470-2045(20)30532-5.

    Article  PubMed  Google Scholar 

  109. O'Hara, M.H., O'Reilly. E.M., ..., Vonderheide, R.H., (2021) 4019: Gemcitabine (Gem) and nab-paclitaxel(NP) ± nivolumab (Nivo) ± CD40 agonistic monoclonal antibody APX005M (Sotigalimab), in patients (Pts) with untreated metastatic pancreatic adenocarcinoma (mPDAC): Phase (Ph) 2 final results. Journal of Clinical Oncology, 39. https://meetinglibrary.asco.org/record/196811/abstract.

  110. Thomas, L. J., He, L., Gergel, L. E., et al. (2019). Abstract 3217: Preclinical evaluation of the recombinant dendritic cell growth factor CDX-301 (Flt3L), and AST-008, a TLR9 agonist SNA. Cancer Research, 79(13), 3217. http://cancerres.aacrjournals.org/content/79/13_Supplement/3217.abstract. https://doi.org/10.1158/1538-7445.AM2019-3217.

    Article  Google Scholar 

  111. Yu, Q., Kovacs, C., Yue, F. Y., & Ostrowski, M. A. (2004). The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses. The Journal of Immunology (1950), 172(10), 6047–6056. http://www.jimmunol.org/cgi/content/abstract/172/10/6047. https://doi.org/10.4049/jimmunol.172.10.6047.

    Article  CAS  Google Scholar 

  112. Sanborn, R. E., Gabrail, N. Y., Bhardwaj, N., et al. (2019). Abstract LB-194: First-in-human phase I study of the CD40 agonist mAb CDX-1140 and in combination with CDX-301(rhFLT3L) in patients with advanced cancers: Interim results. Cancer Research, 79(13 Supplement), LB-194. http://cancerres.aacrjournals.org/content/79/13_Supplement/LB-194.abstract. https://doi.org/10.1158/1538-7445.AM2019-LB-194.

    Article  Google Scholar 

  113. Sun, Z., Fourcade, J., Pagliano, O., et al. (2015). IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells. Cancer Research (Chicago, Ill.), 75(8), 1635–1644. https://www.ncbi.nlm.nih.gov/pubmed/25720800. https://doi.org/10.1158/0008-5472.CAN-14-3016.

    Article  CAS  Google Scholar 

  114. Naing, A., Papadopoulos, K. P., Autio, K. A., et al. (2016). Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10(AM0010) in patients with advanced solid tumors. Journal of Clinical Oncology, 34(29), 3562–3569. https://www.ncbi.nlm.nih.gov/pubmed/27528724. https://doi.org/10.1200/JCO.2016.68.1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hecht, J. R., Lonardi, S., Bendell, J., et al. (2021). Randomized phase III study of FOLFOX alone or with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer that progressed after gemcitabine (SEQUOIA). Journal of Clinical Oncology, 39(10), 1108–1118. https://www.ncbi.nlm.nih.gov/pubmed/33555926. https://doi.org/10.1200/JCO.20.02232.

    Article  PubMed  Google Scholar 

  116. Spigel, D., Jotte, R., Nemunaitis, J., et al. (2021). Randomized phase 2 studies of checkpoint inhibitors alone or in combination with pegilodecakin in patients with metastatic NSCLC (CYPRESS 1 and CYPRESS 2). Journal of Thoracic Oncology, 16(2), 327–333. https://doi.org/10.1016/j.jtho.2020.10.001.

    Article  CAS  PubMed  Google Scholar 

  117. Phan, U., Ueda, R., Mangadu, R., et al. (2016). Development of the anti-IL-10 mAb MK-1966 in combination with in situ vaccination of a TLR9 agonist SD-101 for cancer immunotherapy. European Journal of Cancer, 69, S91–S92. https://doi.org/10.1016/S0959-8049(16)32870-2.

    Article  Google Scholar 

  118. Ni, G., Zhang, L., Yang, X., et al. (2020). Targeting interleukin-10 signalling for cancer immunotherapy, a promising and complicated task. Human Vaccines & Immunotherapeutics, 16(10)), 2328–2332. http://www.tandfonline.com/doi/abs/10.1080/21645515.2020.1717185. https://doi.org/10.1080/21645515.2020.1717185.

    Article  CAS  Google Scholar 

  119. Slaney, C. Y., Kershaw, M. H., & Darcy, P. K. (2014). Trafficking of T cells into tumors. Cancer Research (Chicago, Ill.)., 74(24), 7168–7174. https://www.ncbi.nlm.nih.gov/pubmed/25477332. https://doi.org/10.1158/0008-5472.CAN-14-2458.

  120. Hilmi, M., Nicolle, R., Bousquet, C., & Neuzillet, C. (2020). Cancer-associated fibroblasts: Accomplices in the tumor immune evasion. Cancers., 12(10), 1–23. https://search.proquest.com/docview/2451852116. https://doi.org/10.3390/cancers12102969.

    Article  CAS  Google Scholar 

  121. Grauel, A. L., Nguyen, B., Ruddy, D., et al. (2020). TGFβ-blockade uncovers stromal plasticity in tumors by revealing the existence of a subset of interferon-licensed fibroblasts. Nature Communications, 11(1), 6315. https://www.ncbi.nlm.nih.gov/pubmed/33298926. https://doi.org/10.1038/s41467-020-19920-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Moore, M. J., Hamm, J., Dancey, J., et al. (2003). Comparison of gemcitabine versus the matrix metalloproteinase inhibitor BAY 12-9566 in patients with advanced or metastatic adenocarcinoma of the pancreas: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 21(17), 3296–3302. http://jco.ascopubs.org/content/21/17/3296.abstract. https://doi.org/10.1200/JCO.2003.02.098.

    Article  CAS  PubMed  Google Scholar 

  123. Bramhall, S. R., Schulz, J., Nemunaitis, J., Brown, P. D., Baillet, M., & Buckets, J. A. C. (2002). A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. British Journal of Cancer, 87(2), 161–167. https://doi.org/10.1038/sj.bjc.6600446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Whatcott, C. J., Diep, C. H., Jiang, P., et al. (2015). Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clinical Cancer Research, 21(15), 3561–3568. https://www.ncbi.nlm.nih.gov/pubmed/25695692. https://doi.org/10.1158/1078-0432.CCR-14-1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jacobetz, M. A., Chan, D. S., Neesse, A., et al. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut., 62(1), 112–120. https://doi.org/10.1136/gutjnl-2012-302529.

    Article  CAS  PubMed  Google Scholar 

  126. Ramanathan, R. K., McDonough, S. L., Philip, P. A., et al. (2019). Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. Journal of Clinical Oncology, 37(13), 1062–1069. https://www.ncbi.nlm.nih.gov/pubmed/30817250. https://doi.org/10.1200/JCO.18.01295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hingorani, S. R., Zheng, L., Bullock, A. J., et al. (2018). HALO 202: Randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. Journal of Clinical Oncology, 36(4), 359–366. https://www.ncbi.nlm.nih.gov/pubmed/29232172. https://doi.org/10.1200/JCO.2017.74.9564.

    Article  CAS  PubMed  Google Scholar 

  128. Van Cutsem, E., Tempero, M. A., Sigal, D., et al. (2020). Randomized phase III trial of Pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. Journal of Clinical Oncology, 38(27), 3185–3194. https://www.ncbi.nlm.nih.gov/pubmed/32706635. https://doi.org/10.1200/JCO.20.00590.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Blair, A. B., Kim, V. M., Muth, S. T., et al. (2019). Dissecting the stromal signaling and regulation of myeloid cells and memory effector T cells in pancreatic cancer. Clinical Cancer Research, 25(17), 5351–5363. https://www.ncbi.nlm.nih.gov/pubmed/31186314. https://doi.org/10.1158/1078-0432.CCR-18-4192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yao, W., Maitra, A., & Ying, H. (2020). Recent insights into the biology of pancreatic cancer. EBioMedicine., 53, 102655. https://doi.org/10.1016/j.ebiom.2020.102655.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lo, A., Li, C., Buza, E. L., et al. (2017). Fibroblast activation protein augments progression and metastasis of pancreatic ductal adenocarcinoma. JCI Insight, 2(19), e92232. https://www.ncbi.nlm.nih.gov/pubmed/28978805. https://doi.org/10.1172/jci.insight.92232.

    Article  PubMed Central  Google Scholar 

  132. Ostermann, E., Garin-Chesa, P., Heider, K. H., et al. (2008). Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clinical Cancer Research, 14(14), 4584–4592. http://clincancerres.aacrjournals.org/content/14/14/4584.abstract. https://doi.org/10.1158/1078-0432.CCR-07-5211.

    Article  CAS  PubMed  Google Scholar 

  133. Wang, L. S., Lo, A., Solomides, C. C., et al. (2014). Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunology Research, 2(2), 154–166. https://www.ncbi.nlm.nih.gov/pubmed/24778279. https://doi.org/10.1158/2326-6066.CIR-13-0027.

    Article  CAS  PubMed  Google Scholar 

  134. Nugent, F. W., Cunningham, C., Barve, M. A., et al. (2007). Phase 2 study of talabostat/gemcitabine in stage IV pancreatic cancer. Journal of Clinical Oncology, 25(18_suppl), 4616. https://doi.org/10.1200/jco.2007.25.18_suppl.4616.

    Article  Google Scholar 

  135. Hofheinz, R., Al-Batran, S., Hartmann, F., et al. (2003). Stromal antigen targeting by a humanised monoclonal antibody: An early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Oncology Research and Treatment., 26(1), 44–48. https://www.karger.com/Article/Abstract/69863. https://doi.org/10.1159/000069863.

    Article  CAS  Google Scholar 

  136. Boyd, L. N. C., Andini, K. D., Peters, G. J., Kazemier, G., & Giovannetti, E. (2021). Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment. Seminars in Cancer Biology. https://doi.org/10.1016/j.semcancer.2021.03.006.

  137. Özdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., et al. (2015). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 28(6), 831–833. https://doi.org/10.1016/j.ccell.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  138. Rhim, A., Oberstein, P., Thomas, D., et al. (2014). Stromal Elements Act to Restrain, rather than Support. Pancreatic Ductal Adenocarcinoma. Cancer Cell., 25(6), 735–747. https://doi.org/10.1016/j.ccr.2014.04.021.

    Article  CAS  PubMed  Google Scholar 

  139. Ene-Obong, A., Clear, A. J., Watt, J., et al. (2013). Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology (New York, N.Y. 1943), 145(5), 1121–1132. https://www.clinicalkey.es/playcontent/1-s2.0-S0016508513010767. https://doi.org/10.1053/j.gastro.2013.07.025.

    Article  CAS  Google Scholar 

  140. Feig, C., Jones, J. O., Kraman, M., et al. (2013. https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::a4554aee871787ca179594681f5fbc79). Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1320318110.

  141. Seo, Y. D., Jiang, X., Sullivan, K. M., et al. (2019). Mobilization of CD8 + T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. Clinical Cancer Research, 25(13), 3934–3945. https://www.ncbi.nlm.nih.gov/pubmed/30940657. https://doi.org/10.1158/1078-0432.CCR-19-0081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bockorny, B., Semenisty, V., Macarulla, T., et al. (2020). BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: The COMBAT trial. Nature Medicine, 26(6), 878–885. https://www.ncbi.nlm.nih.gov/pubmed/32451495. https://doi.org/10.1038/s41591-020-0880-x.

    Article  CAS  PubMed  Google Scholar 

  143. Wang-Gillam, A., Li, C., Bodoky, G., et al. (2016). Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. The Lancet (British Edition), 387(10018), 545–557. https://www.clinicalkey.es/playcontent/1-s2.0-S0140673615009861. https://doi.org/10.1016/S0140-6736(15)00986-1.

    Article  CAS  Google Scholar 

  144. Derynck, R., Turley, S. J., & Akhurst, R. J. (2021). TGFβ biology in cancer progression and immunotherapy. Nature Reviews. Clinical Oncology, 18(1), 9–34. https://www.ncbi.nlm.nih.gov/pubmed/32710082. https://doi.org/10.1038/s41571-020-0403-1.

    Article  PubMed  Google Scholar 

  145. Bartholin, L., Cyprian, F. S., Vincent, D., et al. (2008). Generation of mice with conditionally activated transforming growth factor beta signaling through the TbetaRI/ALK5 receptor. Genesis (New York, N.Y. : 2000), 46(12), 724–731. https://www.ncbi.nlm.nih.gov/pubmed/18821589. https://doi.org/10.1002/dvg.20425.

    Article  CAS  Google Scholar 

  146. Park, H., Bang, J., Nam, A., et al. (2020). The prognostic role of soluble TGF-beta and its dynamics in unresectable pancreatic cancer treated with chemotherapy. Cancer Medicine (Malden, MA), 9(1), 43–51. https://onlinelibrary.wiley.com/doi/abs/10.1002/cam4.2677. https://doi.org/10.1002/cam4.2677.

    Article  CAS  Google Scholar 

  147. Soares, K. C., Rucki, A. A., Kim, V., et al. (2015). TGF-Β blockade depletes T regulatory cells from metastatic pancreatic tumors in a vaccine dependent manner. Oncotarget, 6(40), 43005–43015. https://www.ncbi.nlm.nih.gov/pubmed/26515728. https://doi.org/10.18632/oncotarget.5656.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mariathasan, S., Turley, S. J., Nickles, D., et al. (2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature (London), 554(7693), 544–548. https://www.ncbi.nlm.nih.gov/pubmed/29443960. https://doi.org/10.1038/nature25501.

    Article  CAS  Google Scholar 

  149. Principe, D. R., Park, A., Dorman, M. J., et al. (2019). TGFβ blockade augments PD-1 inhibition to promote T-cell-mediated regression of pancreatic cancer. Molecular Cancer Therapeutics, 18(3), 613–620. https://www.ncbi.nlm.nih.gov/pubmed/30587556. https://doi.org/10.1158/1535-7163.MCT-18-0850.

    Article  CAS  PubMed  Google Scholar 

  150. Melisi, D., Garcia-Carbonero, R., Macarulla, T., et al. (2018). Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. British Journal of Cancer, 119(10), 1208–1214. https://www.ncbi.nlm.nih.gov/pubmed/30318515. https://doi.org/10.1038/s41416-018-0246-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Melisi, D., Oh, D., Hollebecque, A., et al. (2021). Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer. Journal for Immunotherapy of Cancer, 9(3), e002068. https://doi.org/10.1136/jitc-2020-002068.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Strauss, J., Heery, C. R., Schlom, J., et al. (2018). Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clinical Cancer Research, 24(6), 1287–1295. https://www.ncbi.nlm.nih.gov/pubmed/29298798. https://doi.org/10.1158/1078-0432.CCR-17-2653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Press Release: Merck KGaA, (2021) Darmstadt, Germany, reports topline data for Bintrafusp alfa as second-line monotherapy treatment in biliary tract cancer. Dow Jones Institutional NewsMar 16, https://global.factiva.com/en/du/article.asp?accessionno=DJDN000020210316eh3g000hi.

  154. Zhang, D., Li, L., Jiang, H., et al. (2018). Tumor-stroma IL1β-IRAK4 feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis in pancreatic cancer. Cancer Research, 78(7), 1700–1712. https://doi.org/10.1158/0008-5472.CAN-17-1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Das, S., Shapiro, B., Vucic, E. A., Vogt, S., & Bar-Sagi, D. (2020). Tumor cell-derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer. Cancer Research (Chicago, Ill.), 80(5), 1088–1101. https://www.ncbi.nlm.nih.gov/pubmed/31915130. https://doi.org/10.1158/0008-5472.CAN-19-2080.

    Article  CAS  Google Scholar 

  156. Johnson, B. E., Kim, T. M., Hiltermann, T. J., et al. (2020). Abstract CT214: CANOPY-1: safety run-in results from phase (Ph) 3 study of canakinumab (CAN) or placebo (PBO) in combination (Comb) with pembrolizumab (PEM) plus platinum-based doublet chemotherapy (Ctx) as 1St line therapy in patients (Pts) with advanced or metastatic NSCLC. Cancer Research, 80(16), CT214. http://cancerres.aacrjournals.org/content/80/16_Supplement/CT214.abstract. https://doi.org/10.1158/1538-7445.AM2020-CT214.

    Article  Google Scholar 

  157. Osipov, A., Blair, A. B., Liberto, J., et al. (2021). Inhibition of focal adhesion kinase enhances antitumor response of radiation therapy in pancreatic cancer through CD8+ T cells. Cancer Biology & Medicine, 18(1), 206–214. https://www.ncbi.nlm.nih.gov/pubmed/33628595. https://doi.org/10.20892/j.issn.2095-3941.2020.0273.

    Article  CAS  Google Scholar 

  158. Stokes, J. B., Adair, S. J., Slack-Davis, J. K., et al. (2011). Inhibition of Focal Adhesion Kinase by PF-562,271 Inhibits the Growth and Metastasis of Pancreatic Cancer Concomitant with Altering the Tumor Microenvironment. Molecular Cancer Therapeutics, 10(11), 2135–2145. https://www.ncbi.nlm.nih.gov/pubmed/21903606. https://doi.org/10.1158/1535-7163.MCT-11-0261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang-Gillam, A., McWilliams, R., Lockhart, A. C., et al. (2020). Abstract CT118: Phase I study of defactinib combined with pembrolizumab and gemcitabine in patients with advanced cancer: Experiences of pancreatic ductal adenocarcinoma (PDAC) patients. Cancer Research, 80(16 Supplement), CT118. http://cancerres.aacrjournals.org/content/80/16_Supplement/CT118.abstract. https://doi.org/10.1158/1538-7445.AM2020-CT118.

    Article  Google Scholar 

  160. Jiang, H., Liu, X., Knolhoff, B. L., et al. (2020). Development of resistance to FAK inhibition in pancreatic cancer is linked to stromal depletion. Gut., 69(1), 122–132. https://doi.org/10.1136/gutjnl-2018-317424.

    Article  CAS  PubMed  Google Scholar 

  161. Chen, H., Bian, A., Yang, L., et al. (2021). Targeting STAT3 by a small molecule suppresses pancreatic cancer progression. Oncogene., 40(8), 1440–1457. https://www.ncbi.nlm.nih.gov/pubmed/33420372. https://doi.org/10.1038/s41388-020-01626-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ho, W. J., Jaffee, E. M., & Zheng, L. (2020). The tumour microenvironment in pancreatic cancer - Clinical challenges and opportunities. Nature Reviews. Clinical Oncology, 17(9), 527–540. https://www.ncbi.nlm.nih.gov/pubmed/32398706. https://doi.org/10.1038/s41571-020-0363-5.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Liou, G., Döppler, H., Necela, B., et al. (2015). Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions. Cancer Discovery, 5(1), 52–63. https://www.ncbi.nlm.nih.gov/pubmed/25361845. https://doi.org/10.1158/2159-8290.CD-14-0474.

    Article  CAS  PubMed  Google Scholar 

  164. Schmiechen, Z. C., & Stromnes, I. M. (2020). Mechanisms governing immunotherapy resistance in pancreatic ductal adenocarcinoma. Frontiers in Immunology, 11, 613815. https://www.ncbi.nlm.nih.gov/pubmed/33584701. https://doi.org/10.3389/fimmu.2020.613815.

    Article  CAS  PubMed  Google Scholar 

  165. Yang, S., Liu, Q., & Liao, Q. (2020). Tumor-associated macrophages in pancreatic ductal adenocarcinoma: Origin, polarization, function, and reprogramming. Frontiers in Cell and Development Biology, 8, 607209. https://www.ncbi.nlm.nih.gov/pubmed/33505964. https://doi.org/10.3389/fcell.2020.607209.

    Article  Google Scholar 

  166. Groth, C., Hu, X., Weber, R., et al. (2019). Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. British Journal of Cancer, 120(1), 16–25. https://www.ncbi.nlm.nih.gov/pubmed/30413826. https://doi.org/10.1038/s41416-018-0333-1.

    Article  CAS  PubMed  Google Scholar 

  167. Chao, T., Furth, E. E., & Vonderheide, R. H. (2016). CXCR2-dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunology Research, 4(11), 968–982. https://www.ncbi.nlm.nih.gov/pubmed/27737879. https://doi.org/10.1158/2326-6066.CIR-16-0188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Shen, M., Hu, P., Donskov, F., Wang, G., Liu, Q., & Du, J. (2014). Tumor-associated neutrophils as a new prognostic factor in cancer: A systematic review and meta-analysis. PLoS One, 9(6), e98259. https://www.ncbi.nlm.nih.gov/pubmed/24906014. https://doi.org/10.1371/journal.pone.0098259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lianyuan, T., Gang, L., Ming, T., et al. (2020). Tumor associated neutrophils promote the metastasis of pancreatic ductal adenocarcinoma. Cancer Biology & Therapy, 21(10), 937–945. http://www.tandfonline.com/doi/abs/10.1080/15384047.2020.1807250. https://doi.org/10.1080/15384047.2020.1807250.

    Article  CAS  Google Scholar 

  170. Leinwand, J., & Miller, G. (2020). Regulation and modulation of antitumor immunity in pancreatic cancer. Nature Immunology, 21(10), 1152–1159. https://www.ncbi.nlm.nih.gov/pubmed/32807942. https://doi.org/10.1038/s41590-020-0761-y.

    Article  CAS  PubMed  Google Scholar 

  171. Dickson, I. (2019). CD11b Agonism overcomes PDAC immunotherapy resistance. Nature Reviews Gastroenterology & Hepatology, 16(9), 514. https://www.ncbi.nlm.nih.gov/pubmed/31332304. https://doi.org/10.1038/s41575-019-0191-1.

    Article  CAS  Google Scholar 

  172. Panni, R. Z., Herndon, J. M., Zuo, C., et al. (2019). Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Science Translational Medicine, 11(499), eaau9240. https://www.ncbi.nlm.nih.gov/pubmed/31270275. https://doi.org/10.1126/scitranslmed.aau9240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bendell, J., Messersmith, W., Rasco, D., et al. (2020). 388 preliminary results from KEYNOTE-A36, a study of GB1275, a first-in-class oral CD11b modulator, alone and with pembrolizumab or chemotherapy in specified advanced solid tumors. Journal for Immunotherapy of Cancer, 8(Suppl 3), A413. https://doi.org/10.1136/jitc-2020-SITC2020.0388.

    Article  Google Scholar 

  174. Gunderson, A. J., Kaneda, M. M., Tsujikawa, T., et al. (2016). Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discovery, 6(3), 270–285. https://www.ncbi.nlm.nih.gov/pubmed/26715645. https://doi.org/10.1158/2159-8290.CD-15-0827.

    Article  CAS  PubMed  Google Scholar 

  175. Das, S., & Bar-Sagi, D. (2019). BTK signaling drives CD1d Hi CD5 + regulatory B-cell differentiation to promote pancreatic carcinogenesis. Oncogene., 38(17), 3316 https://www.ncbi.nlm.nih.gov/pubmed/30635655.

    Article  CAS  Google Scholar 

  176. Overman, M., Javle, M., Davis, R. E., et al. (2020). Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer. Journal for Immunotherapy of Cancer, 8(1), e000587. https://doi.org/10.1136/jitc-2020-000587.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Li, M., Li, M., Yang, Y., et al. (2020). Remodeling tumor immune microenvironment via targeted blockade of PI3K-Γ and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy. Journal of Controlled Release, 321, 23–35. https://doi.org/10.1016/j.jconrel.2020.02.011.

    Article  CAS  PubMed  Google Scholar 

  178. Candido, J. B., Morton, J. P., Bailey, P., et al. (2018). CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Reports (Cambridge)., 23(5), 1448–1460. https://doi.org/10.1016/j.celrep.2018.03.131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Saung, M. T., Muth, S., Ding, D., et al. (2018). Targeting myeloid-inflamed tumor with anti-CSF-1R antibody expands CD137+ effector T-cells in the murine model of pancreatic cancer. Journal for Immunotherapy of Cancer, 6(1), 118. https://www.ncbi.nlm.nih.gov/pubmed/30424804. https://doi.org/10.1186/s40425-018-0435-6.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zhu, Y., Knolhoff, B. L., Meyer, M. A., et al. (2014). CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Research (Chicago, Ill.), 74(18), 5057–5069. https://www.ncbi.nlm.nih.gov/pubmed/25082815. https://doi.org/10.1158/0008-5472.CAN-13-3723.

    Article  CAS  Google Scholar 

  181. Wang-Gillam, A., O'Reilly, E. M., Bendell, J. C., et al. (2019). A randomized phase II study of cabiralizumab (Cabira) + nivolumab (Nivo) ± chemotherapy (Chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). Journal of Clinical Oncology, 37(4_suppl), TPS465. https://doi.org/10.1200/JCO.2019.37.4_suppl.TPS465.

    Article  Google Scholar 

  182. Cassier, P. A., Garin, G., Eberst, L., et al. (2019). MEDIPLEX: A phase 1 study of durvalumab (D) combined with pexidartinib (P) in patients (Pts) with advanced pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). Journal of Clinical Oncology, 37(15_suppl), 2579. https://doi.org/10.1200/JCO.2019.37.15_suppl.2579.

    Article  Google Scholar 

  183. Mitchem, J. B., Brennan, D. J., Hewitt, S., et al. (2013). Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Research (Chicago, Ill.), 73(3), 1128–1141. https://www.ncbi.nlm.nih.gov/pubmed/23221383. https://doi.org/10.1158/0008-5472.CAN-12-2731.

    Article  CAS  Google Scholar 

  184. Tu, M. M., Abdel-Hafiz, H. A., Jones, R. T., et al. (2020). Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Communications Biology., 3(1), 720. https://www.ncbi.nlm.nih.gov/pubmed/33247183. https://doi.org/10.1038/s42003-020-01441-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Noel, M., O’Reilly, E. M., Wolpin, B. M., et al. (2020). Phase 1b study of a small molecule antagonist of human chemokine (C-C Motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Investigational New Drugs, 38(3), 800–811. https://www.ncbi.nlm.nih.gov/pubmed/31297636. https://doi.org/10.1007/s10637-019-00830-3.

    Article  CAS  PubMed  Google Scholar 

  186. Nywening, T. M., Belt, B. A., Cullinan, D. R., et al. (2018). Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut., 67(6), 1112–1123. https://doi.org/10.1136/gutjnl-2017-313738.

    Article  CAS  PubMed  Google Scholar 

  187. Steele, C. W., Karim, S. A., Leach, J. D. G., et al. (2016). CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), 832–845. https://doi.org/10.1016/j.ccell.2016.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cohen, E. E. W., Harrington, K. J., Hong, D. S., et al. (2018). 1044OA phase Ib/II study (SCORES) of durvalumab (D) plus danvatirsen (DAN; AZD9150) or AZD5069 (CX2i) in advanced solid malignancies and recurrent/metastatic head and neck squamous cell carcinoma (RM-HNSCC): Updated results. Annals of Oncology, 29(suppl_8), 953. https://explore.openaire.eu/search/publication?articleId=sygma_______::af74c48379df5d8242647725d5958545. https://doi.org/10.1093/annonc/mdy287.

    Article  Google Scholar 

  189. AstraZeneca, (2019) Phase Ib/II study of MEDI4736 evaluated in different combinations in metastatic pancreatic ductal carcinoma (ClinicalTrials.gov Identifier: NCT02583477). https://ClinicalTrials.gov/show/NCT02583477. Updated. Accessed July 17, 2021.

  190. Ciernikova, S., Earl, J., García Bermejo, M. L., Stevurkova, V., Carrato, A., & Smolkova, B. (2020). Epigenetic landscape in pancreatic ductal adenocarcinoma: on the way to overcoming drug resistance? International Journal of Molecular Sciences, 21(11), 4091. https://www.ncbi.nlm.nih.gov/pubmed/32521716. https://doi.org/10.3390/ijms21114091.

    Article  CAS  PubMed Central  Google Scholar 

  191. Topper, M. J., Vaz, M., Marrone, K. A., Brahmer, J. R., & Baylin, S. B. (2020). The emerging role of epigenetic therapeutics in immuno-oncology. Nature Reviews. Clinical Oncology, 17(2), 75–90. https://www.ncbi.nlm.nih.gov/pubmed/31548600. https://doi.org/10.1038/s41571-019-0266-5.

    Article  PubMed  Google Scholar 

  192. Ghoneim, H. E., Fan, Y., Moustaki, A., et al. (2017). De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell (Cambridge), 170(1), 142–157.e19. https://doi.org/10.1016/j.cell.2017.06.007.

    Article  CAS  Google Scholar 

  193. Ritter, C., Fan, K., Paschen, A., et al. (2017). Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Scientific Reports, 7(1), 2290–2211. https://www.ncbi.nlm.nih.gov/pubmed/28536458. https://doi.org/10.1038/s41598-017-02608-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Christmas, B. J., Rafie, C. I., Hopkins, A. C., et al. (2018). Entinostat converts immune-resistant breast and pancreatic cancers into checkpoint-responsive tumors by reprogramming tumor-infiltrating MDSCs. Cancer Immunology Research, 6(12), 1561–1577. https://www.ncbi.nlm.nih.gov/pubmed/30341213. https://doi.org/10.1158/2326-6066.CIR-18-0070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Xiao, Q., Zhou, D., Rucki, A. A., et al. (2016). Cancer-associated fibroblasts in pancreatic cancer are reprogrammed by tumor-induced alterations in genomic DNA methylation. Cancer Research (Chicago, Ill.), 76(18), 5395–5404. https://www.ncbi.nlm.nih.gov/pubmed/27496707. https://doi.org/10.1158/0008-5472.CAN-15-3264.

    Article  CAS  Google Scholar 

  196. Maibach, F., Sadozai, H., Seyed Jafari, S. M., Hunger, R. E., & Schenk, M. (2020). Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma. Frontiers in Immunology, 11, 2105. https://search.proquest.com/docview/2448640845. https://doi.org/10.3389/fimmu.2020.02105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zamarin, D., Hamid, O., Nayak-Kapoor, A., et al. (2020). Mogamulizumab in combination with durvalumab or tremelimumab in patients with advanced solid tumors: A phase I study. Clinical Cancer Research, 26(17), 4531–4541. https://search.proquest.com/docview/2418118344. https://doi.org/10.1158/1078-0432.CCR-20-0328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ebert, P. J. R., Cheung, J., Yang, Y., et al. (2016). MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity (Cambridge, Mass.), 44(3), 609–621. https://search.datacite.org/works/10.1016/j.immuni.2016.01.024. https://doi.org/10.1016/j.immuni.2016.01.024.

    Article  CAS  Google Scholar 

  199. Baumann, D., Hägele, T., Mochayedi, J., et al. (2020). Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy. Nature Communications, 11(1), 2176. https://www.ncbi.nlm.nih.gov/pubmed/32358491. https://doi.org/10.1038/s41467-020-15979-2.

  200. Liu, L., Mayes, P. A., Eastman, S., et al. (2015). The BRAF and MEK inhibitors dabrafenib and trametinib: Effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clinical Cancer Research, 21(7), 1639–1651. http://clincancerres.aacrjournals.org/content/21/7/1639.abstract. https://doi.org/10.1158/1078-0432.CCR-14-2339.

    Article  CAS  PubMed  Google Scholar 

  201. Loi, S., Dushyanthen, S., Beavis, P. A., et al. (2016). RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clinical Cancer Research, 22(6), 1499–1509. https://search.datacite.org/works/10.1158/1078-0432.ccr-15-1125. https://doi.org/10.1158/1078-0432.ccr-15-1125.

    Article  CAS  PubMed  Google Scholar 

  202. Poon, E., Mullins, S., Watkins, A., et al. (2017). The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment. Journal for Immunotherapy of Cancer, 5(1), 63. https://www.ncbi.nlm.nih.gov/pubmed/28807001. https://doi.org/10.1186/s40425-017-0268-8.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Steinberg, S. M., Shabaneh, T. B., Zhang, P., et al. (2017). Myeloid cells that impair immunotherapy are restored in melanomas which acquire resistance to BRAF inhibitors. Cancer Research (Chicago, Ill.), 77(7), 1599–1610. https://www.ncbi.nlm.nih.gov/pubmed/28202513. https://doi.org/10.1158/0008-5472.CAN-16-1755.

    Article  CAS  Google Scholar 

  204. Allegrezza, M. J., Rutkowski, M. R., Stephen, T. L., et al. (2016). Trametinib drives T-cell–dependent control of KRAS-mutated tumors by inhibiting pathological myelopoiesis. Cancer Research (Chicago, Ill.), 76(21), 6253–6265. https://www.ncbi.nlm.nih.gov/pubmed/27803104. https://doi.org/10.1158/0008-5472.CAN-16-1308.

    Article  CAS  Google Scholar 

  205. Yarchoan, M., Mohan, A. A., Dennison, L., et al. (2019). MEK inhibition suppresses B regulatory cells and augments anti-tumor immunity. PLoS One, 14(10), e0224600. https://doi.org/10.1371/journal.pone.0224600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bendell, J., Ciardiello, F., Tabernero, J., et al. (2018). Efficacy and safety results from IMblaze370, a randomised phase III study comparing atezolizumab+cobimetinib and atezolizumab monotherapy vs regorafenib in chemotherapy-refractory metastatic colorectal cancer. Annals of Oncology, 29, v123. https://doi.org/10.1093/annonc/mdy208.003.

    Article  Google Scholar 

  207. Yarchoan, M., Cope, L., Anders, R., Noonan, A., Goff, L., Azad, N., (2020) CT043 - A multicenter randomized phase 2 trial of atezolizumab as monotherapy or in combination with cobimetinib in biliary tract cancers (BTCs): A NCI Experimental Therapeutics Clinical Trials Network (ETCTN) study. https://www.abstractsonline.com/pp8/#!/9045/presentation/10752.

  208. Dushyanthen, S., Teo, Z. L., Caramia, F., et al. (2017). Agonist immunotherapy restores T cell function following MEK inhibition improving efficacy in breast cancer. Nature Communications, 8(1), 606–618. https://search.datacite.org/works/10.1038/s41467-017-00728-9. https://doi.org/10.1038/s41467-017-00728-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Dennison L, Ruggieri A, Mohan A, et al. Context-Dependent Immunomodulatory Effects of MEK Inhibition are Enhanced with T-Cell Agonist Therapy. Cancer Immunol Res. 2021. http://cancerimmunolres.aacrjournals.org/content/early/2021/09/06/2326-6066.CIR-21-0147. https://doi.org/10.1158/2326-6066.CIR-21-0147.

  210. Largeot, A., Pagano, G., Gonder, S., Moussay, E., & Paggetti, J. (2019). The B-side of cancer immunity: The underrated tune. Cells (Basel, Switzerland), 8(5), 449. https://www.ncbi.nlm.nih.gov/pubmed/31086070. https://doi.org/10.3390/cells8050449.

    Article  CAS  Google Scholar 

  211. Hauser, S. L., Bar-Or, A., Comi, G., et al. (2017). Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. The New England Journal of Medicine., 376(3), 221–234. https://doi.org/10.1056/NEJMoa1601277.

    Article  CAS  PubMed  Google Scholar 

  212. Edwards, J. C. W., Szczepanski, L., Szechinski, J., et al. (2004). Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. The New England Journal of Medicine., 350(25), 2572–2581. http://content.nejm.org/cgi/content/abstract/350/25/2572. https://doi.org/10.1056/NEJMoa032534.

    Article  CAS  PubMed  Google Scholar 

  213. DiLillo, D. J., Yanaba, K., & Tedder, T. F. (2010). B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: Therapeutic B cell depletion enhances B16 melanoma growth in mice. The Journal of Immunology (1950), 184(7), 4006–4016. http://www.jimmunol.org/cgi/content/abstract/184/7/4006. https://doi.org/10.4049/jimmunol.0903009.

    Article  CAS  Google Scholar 

  214. Aklilu, M., Stadler, W. M., Markiewicz, M., et al. (2004). Depletion of normal B cells with rituximab as an adjunct to IL-2 therapy for renal cell carcinoma and melanoma. Annals of Oncology, 15(7), 1109–1114. https://api.istex.fr/ark:/67375/HXZ-X0MRZ9L3-X/fulltext.pdf. https://doi.org/10.1093/annonc/mdh280.

    Article  CAS  PubMed  Google Scholar 

  215. Wejksza, K., Lee-Chang, C., Bodogai, M., et al. (2013). Cancer-produced metabolites of 5-lipoxygenase induce tumor-evoked regulatory B cells via peroxisome proliferator-activated receptor Α. The Journal of Immunology (1950), 190(6), 2575–2584. https://www.ncbi.nlm.nih.gov/pubmed/23408836. https://doi.org/10.4049/jimmunol.1201920.

    Article  CAS  Google Scholar 

  216. Shimabukuro-Vornhagen, A., Draube, A., Liebig, T. M., Rothe, A., Kochanek, M., & von Bergwelt-Baildon, M. S. (2012). The immunosuppressive factors IL-10, TGF-Β, and VEGF do not affect the antigen-presenting function of CD40-activated B cells. Journal of Experimental & Clinical Cancer Research, 31(1), 47. https://www.ncbi.nlm.nih.gov/pubmed/22592077. https://doi.org/10.1186/1756-9966-31-47.

    Article  CAS  Google Scholar 

  217. Gonzalez, N. K., Wennhold, K., Balkow, S., et al. (2015). In vitro and in vivo imaging of initial B-T-cell Interactions in the setting of B-cell based cancer immunotherapy. Oncoimmunology., 4(9), e1038684. http://www.tandfonline.com/doi/abs/10.1080/2162402X.2015.1038684. https://doi.org/10.1080/2162402X.2015.1038684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Yarchoan, M., Ho, W. J., Mohan, A., et al. (2020). Effects of B cell-activating factor on tumor immunity. JCI Insight, 5(10), e136417. https://www.ncbi.nlm.nih.gov/pubmed/32434989. https://doi.org/10.1172/jci.insight.136417.

    Article  PubMed Central  Google Scholar 

  219. Shurin, M. R., Ma, Y., Keskinov, A. A., et al. (2016). BAFF and APRIL from activin A-treated dendritic cells upregulate the antitumor efficacy of dendritic cells in vivo. Cancer Research (Chicago, Ill.), 76(17), 4959–4969. https://www.ncbi.nlm.nih.gov/pubmed/27364554. https://doi.org/10.1158/0008-5472.CAN-15-2668.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilofer Azad.

Ethics declarations

Conflict of Interest

Dr. Heumann has no conflict of interests. Dr. Azad receives research funding from BMS, Merck, Incyte, Syndax, Intensity, Bayer, EMD Serono. She receives financial compensation as a consultant for AstraZeneca and Merck/EMD Serono.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The figure captions captured the title of the figures but the figure descriptions were not included.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heumann, T., Azad, N. Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance. Cancer Metastasis Rev 40, 837–862 (2021). https://doi.org/10.1007/s10555-021-09981-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-021-09981-3

Keywords

Navigation