Skip to main content

Advertisement

Log in

The relationship between ring-type dedicated breast PET and immune microenvironment in early breast cancer

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) is related to the biological parameters and prognosis of breast cancer. However, whether whole-body PET (WBPET) and dedicated breast PET (DbPET) can reflect the tumor microenvironment is unclear. This study investigated the relationship between stromal tumor-infiltrating lymphocytes (TILs) and maximum standardized uptake value (SUVmax) in WBPET and DbPET.

Methods

A total of 125 invasive breast cancers underwent WBPET and ring-type DbPET and resected specimens were pathologically assessed. The impact of SUVmax on the tumor biological parameters and TILs was retrospectively evaluated. SUVmax was classified as high and low relative to the median values (WBPET-SUVmax: 2.2 and DbPET-SUVmax: 6.0).

Results

SUVmax correlated with tumor size, nuclear grade, Ki-67 labeling index, and TILs in both WBPET and DbPET (all p < 0.001). In multiple linear regression analysis, tumor size, Ki-67 labeling index, and TILs predicted SUVmax in WBPET and DbPET. The cutoff values of tumor size, Ki-67 labeling index, and TILs predicting high SUVmax were 20 mm, 20%, and 20%, respectively. In multivariate analysis, the predictive factors for high SUVmax were tumor size and Ki-67 labeling index for WBPET and tumor size and TILs for DbPET. High SUVmax in DbPET was related to high numbers of TILs after propensity score matching analysis; however, WBPET was not (p = 0.007 and p = 0.624, respectively).

Conclusions

Both SUVmax values in WBPET and DbPET predicted TIL concentration of the primary breast cancer. In DbPET, SUVmax represented the immune microenvironment after adjusting for tumor biological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

DbPET:

Dedicated breast positron emission tomography

ER:

Estrogen receptor

FDG:

18F-fluorodeoxyglucose

FOV:

Field of view

FOXP3:

Forkhead box P3

HER2:

Human epidermal growth factor receptor 2

IC-NST:

Invasive carcinoma of no special type

OR:

Odds ratio

PD-1:

Programmed cell death-1

PET:

Positron emission tomography

SUVmax:

Maximum standardized uptake value

TIL:

Tumor-infiltrating lymphocytes

TNBC:

Triple-negative breast cancer

WBPET:

Whole-body positron emission tomography

References

  1. Nishikawa H, Sakaguchi S (2014) Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 27:1–7. https://doi.org/10.1016/j.coi.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  2. Stanton SE, Adams S, Disis ML (2016) Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol 2(10):1354–1360. https://doi.org/10.1001/jamaoncol.2016.1061

    Article  PubMed  Google Scholar 

  3. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J et al (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19(1):40–50. https://doi.org/10.1016/s1470-2045(17)30904-x

    Article  PubMed  Google Scholar 

  4. Dieci MV, Mathieu MC, Guarneri V, Conte P, Delaloge S, Andre F, Goubar A (2015) Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol 26(8):1698–1704. https://doi.org/10.1093/annonc/mdv239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palsson-McDermott EM, O’Neill LA (2013) The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays 35(11):965–973. https://doi.org/10.1002/bies.201300084

    Article  CAS  PubMed  Google Scholar 

  6. Lee S, Choi S, Kim SY, Yun MJ, Kim HI (2017) Potential utility of FDG PET-CT as a non-invasive tool for monitoring local immune responses. J Gastric Cancer 17(4):384–393. https://doi.org/10.5230/jgc.2017.17.e43

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lopci E, Toschi L, Grizzi F, Rahal D, Olivari L, Castino GF, Marchetti S et al (2016) Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patients with non-small cell lung cancer (NSCLC) who are candidates for upfront surgery. Eur J Nucl Med Mol Imaging 43(11):1954–1961. https://doi.org/10.1007/s00259-016-3425-2

    Article  CAS  Google Scholar 

  8. Masumoto N, Kadoya T, Sasada S, Emi A, Arihiro K, Okada M (2018) Intratumoral heterogeneity on dedicated breast positron emission tomography predicts malignancy grade of breast cancer. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-018-4791-1

    Article  PubMed  Google Scholar 

  9. MacDonald L, Edwards J, Lewellen T, Haseley D, Rogers J, Kinahan P (2009) Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med 50(10):1666–1675. https://doi.org/10.2967/jnumed.109.064345

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL et al (2010) American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28(16):2784–2795. https://doi.org/10.1200/jco.2009.25.6529

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013. https://doi.org/10.1200/jco.2013.50.9984

    Article  PubMed  Google Scholar 

  12. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26(2):259–271. https://doi.org/10.1093/annonc/mdu450

    Article  CAS  PubMed  Google Scholar 

  13. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  Google Scholar 

  14. Ohara M, Shigematsu H, Tsutani Y, Emi A, Masumoto N, Ozaki S, Kadoya T et al (2013) Role of FDG-PET/CT in evaluating surgical outcomes of operable breast cancer–usefulness for malignant grade of triple-negative breast cancer. Breast (Edinburgh, Scotland) 22(5):958–963. https://doi.org/10.1016/j.breast.2013.05.003

    Article  Google Scholar 

  15. Kadoya T, Aogi K, Kiyoto S, Masumoto N, Sugawara Y, Okada M (2013) Role of maximum standardized uptake value in fluorodeoxyglucose positron emission tomography/computed tomography predicts malignancy grade and prognosis of operable breast cancer: a multi-institute study. Breast Cancer Res Treat 141(2):269–275. https://doi.org/10.1007/s10549-013-2687-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aogi K, Kadoya T, Sugawara Y, Kiyoto S, Shigematsu H, Masumoto N, Okada M (2015) Utility of (18)F FDG-PET/CT for predicting prognosis of luminal-type breast cancer. Breast Cancer Res Treat 150(1):209–217. https://doi.org/10.1007/s10549-015-3303-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akimoto E, Kadoya T, Kajitani K, Emi A, Shigematsu H, Ohara M, Masumoto N et al (2018) Role of (18)F-PET/CT in predicting prognosis of patients with breast cancer after neoadjuvant chemotherapy. Clin Breast Cancer 18(1):45–52. https://doi.org/10.1016/j.clbc.2017.09.006

    Article  PubMed  Google Scholar 

  18. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, Ricaud M et al (2006) Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 24(34):5366–5372. https://doi.org/10.1200/jco.2006.05.7406

    Article  PubMed  Google Scholar 

  19. Sasada S, Masumoto N, Goda N, Kajitani K, Emi A, Kadoya T, Okada M (2018) Dedicated breast PET for detecting residual disease after neoadjuvant chemotherapy in operable breast cancer: a prospective cohort study. Eur J Surg Oncol 44(4):444–448. https://doi.org/10.1016/j.ejso.2018.01.014

    Article  PubMed  Google Scholar 

  20. Fowler AM (2014) A molecular approach to breast imaging. J Nucl Med 55(2):177–180. https://doi.org/10.2967/jnumed.113.126102

    Article  PubMed  Google Scholar 

  21. Garcia Hernandez T, Vicedo Gonzalez A, Ferrer Rebolleda J, Sanchez Jurado R, Rosello Ferrando J, Brualla Gonzalez L, Granero Cabanero D et al (2016) Performance evaluation of a high resolution dedicated breast PET scanner. Med Phys 43(5):2261. https://doi.org/10.1118/1.4945271

    Article  PubMed  Google Scholar 

  22. Nishimatsu K, Nakamoto Y, Miyake KK, Ishimori T, Kanao S, Toi M, Togashi K (2017) Higher breast cancer conspicuity on dbPET compared to WB-PET/CT. Eur J Radiol 90:138–145. https://doi.org/10.1016/j.ejrad.2017.02.046

    Article  PubMed  Google Scholar 

  23. Iima M, Nakamoto Y, Kanao S, Sugie T, Ueno T, Kawada M, Mikami Y et al (2012) Clinical performance of 2 dedicated PET scanners for breast imaging: initial evaluation. J Nucl Med 53(10):1534–1542. https://doi.org/10.2967/jnumed.111.100958

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kazushi Marukawa and Masatsugu Tsujimura of Chuden Hospital for providing PET examination data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Sasada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasada, S., Shiroma, N., Goda, N. et al. The relationship between ring-type dedicated breast PET and immune microenvironment in early breast cancer. Breast Cancer Res Treat 177, 651–657 (2019). https://doi.org/10.1007/s10549-019-05339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05339-0

Keywords

Navigation