Skip to main content

Advertisement

Log in

Intratumoral heterogeneity on dedicated breast positron emission tomography predicts malignancy grade of breast cancer

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Dedicated breast positron emission tomography (DbPET) provides detailed high-resolution images and can detect intratumoral heterogeneity using 18F-fluorodeoxyglucose (FDG). We aimed to evaluate the correlation between FDG uptake on DbPET and the clinicopathological features of breast cancer, particularly those with an intratumoral heterogeneous distribution of FDG on DbPET.

Methods

We evaluated 195 consecutive patients with invasive breast cancer who underwent preoperative whole-body PET (WBPET) and DbPET concurrently between January 2016 and March 2017. The relationships between clinicopathological factors and the maximum standard uptake values (SUVmax) of DbPET and WBPET, including clinical stage, nuclear grade, Ki67 proliferation index, estrogen receptor (ER) and human epidermal growth factor receptor type 2 (HER2) statuses, and the intratumoral heterogeneous distribution of FDG on DbPET, were evaluated.

Results

The SUVmax of DbPET was significantly correlated with clinical T stage, N stage, nuclear grade, and Ki67 proliferation index (all p < 0.001) as well as the ER (p = 0.006) and HER2 (p = 0.040) statuses. Intratumoral heterogeneous distribution of FDG on DbPET was significantly related with high nuclear grade (p = 0.016) and high Ki67 proliferation index (p = 0.015) but not with clinical T stage, N stage, and ER and HER2 statuses.

Conclusions

The SUVmax of DbPET correlates with clinicopathological factors and also WBPET does. In addition, intratumoral heterogeneity on DbPET provides predictive value for malignancy grade and could inform therapeutic decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ER:

Estrogen receptor

DbPET:

Dedicated breast positron emission tomography

FDG:

18F-fluorodeoxyglucose

HER2:

Human epidermal growth factor receptor type 2

WBPET:

Whole-body positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

SUVmax:

Maximum standardized uptake value

References

  1. Vansteenkiste JF, Stroobants SG, Dupont PJ, De Leyn PR, Verbeken EK, Deneffe GJ et al (1999) Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucosepositron emission tomography scan in non-small-cell lung cancer: an analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol 17:3201–3206

    Article  PubMed  CAS  Google Scholar 

  2. Okazumi S, Isono K, Enomoto K, Kikuchi T, Ozaki M, Yamamoto H et al (1992) Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med 33:333–339

    PubMed  CAS  Google Scholar 

  3. Fuster D, Duch J, Paredes P, Velasco M, Mun˜oz M, Santamaria G et al (2008) Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol 26:4746–4751

    Article  PubMed  Google Scholar 

  4. Groheux D, Hindie E, Delord M, Giacchetti S, Hamy AS, de Bazelaire C et al (2012) Prognostic impact of (18)FDG-PET-CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst 104:1879–1887

    Article  PubMed  PubMed Central  Google Scholar 

  5. Okada J, Yoshikawa K, Itami M, Imaseki K, Uno K, Itami J et al (1992) Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med 33:325–329

    PubMed  CAS  Google Scholar 

  6. Groheux D, Hindie´ E, Giacchetti S, Hamy AS, Berger F, Merlet P et al (2014) Early assessment with 18F-fluorodeoxyglucose positron emission tomography/computed tomography can help predict the outcome of neoadjuvant chemotherapy in triple negative breast cancer. Eur J Cancer 50:1864–1871

    Article  PubMed  Google Scholar 

  7. Berriolo-Riedinger A, Touzery C, Riedinger JM, Toubeau M, Coudert B, Arnould L et al (2007) [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 34:1915–1924

    Article  PubMed  CAS  Google Scholar 

  8. Humbert O, Berriolo-Riedinger A, Riedinger JM, Coudert B, Arnould L, Cochet A et al (2012) Changes in 18F-FDG tumor metabolism after a first course of neoadjuvant chemotherapy in breast cancer: influence of tumor subtypes. Ann Oncol 23:2572–2577

    Article  PubMed  CAS  Google Scholar 

  9. Buck A, Schirrmeister H, Kuhn T, Shen C, Kalker T, Kotzerke J et al (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 29:1317–1323

    Article  PubMed  CAS  Google Scholar 

  10. Smith TA, Sharma RI, Thompson AM, Paulin FE (2006) Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. J Nucl Med 47:1525–1530

    PubMed  CAS  Google Scholar 

  11. Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ et al (1995) Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 36:1766–1774

    PubMed  CAS  Google Scholar 

  12. Crippa F, Seregni E, Agresti R, Chiesa C, Pascali C, Bogni A et al (1998) Association between [18F]fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation. Eur J Nucl Med 25:1429–1434

    Article  PubMed  CAS  Google Scholar 

  13. Avril N, Menzel M, Dose J, Schelling M, Weber W, Ja¨nicke F et al (2001) Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 42:9–16

    PubMed  CAS  Google Scholar 

  14. Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF et al (2002) Biologic correlates of [18]fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20:379–387

    Article  PubMed  CAS  Google Scholar 

  15. Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A (2006) Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat 98:267–274

    Article  PubMed  Google Scholar 

  16. Groheux D, Giacchetti S, Moretti JL, Porcher R, Espie´ M, Lehmann- Che J et al (2011) Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 38:426–435

    Article  PubMed  Google Scholar 

  17. Fasanella S, Leonardi E, Cantaloni C, Eccher C, Bazzanella I, Aldovini D et al (2011) Proliferative activity in human breast cancer: Ki-67 automated evaluation and the influence of different Ki-67 equivalent antibodies. Diagn Pathol 6:S7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tchou J, Sonnad SS, Bergey MR, Basu S, Tomaszewski J, Alavi A et al (2010) Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol 12:657–662

    Article  PubMed  Google Scholar 

  19. Oshida M, Uno K, Suzuki M, Nagashima T, Hashimoto H, Yagata H et al (1998) Predicting the prognoses of breast carcinoma patients with positron emission tomography using 2-deoxy-2-fluoro[18F]-D-glucose. Cancer 82:2227–2234

    Article  PubMed  CAS  Google Scholar 

  20. Na F, Wang J, Li C, Deng L, Xue J, Lu Y (2014) Primary tumor standardized uptake value measured on F18-Fluorodeoxyglucose positron emission tomography is of prediction value for survival and local control in non-small-cell lung cancer receiving radiotherapy: meta-analysis. J Thorac Oncol 9:834–842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C et al (2008) Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 3:6–12

    Article  PubMed  Google Scholar 

  22. Kadoya T, Aogi K, Kiyoto S, Masumoto N, Sugawara Y, Okada M (2013) Role of maximum standardized uptake value in fluorodeoxyglucose positron emission tomography/computed tomography predicts malignancy grade and prognosis of operable breast cancer: a multi-institute study. Breast Cancer Res Treat 141:269–275

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kenjiro Aogi T, Kadoya Y, Sugawara S, Kiyoto H, Shigematsu N, Masumoto et al (2015) Utility of 18F FDG-PET/CT for predicting prognosis of luminal-type breast cancer. Breast Cancer Res Treat 150:209–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cintolo JA, Tchou J, Pryma DA (2013) Diagnostic and prognostic application of positron emission tomography in breast imaging: emerging uses and the role of PET in monitoring treatment response. Breast Cancer Res Treat 138(2):331–346

    Article  PubMed  Google Scholar 

  25. Hosono M, Saga T, Ito K, Kumita S, Sasaki M, Senda M et al (2014) Clinical practice guideline for dedicated breast PET. Ann Nucl Med 28:597–602

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fowler AM (2014) A molecular approach to breast imaging. J Nucl Med 55:177–180

    Article  PubMed  Google Scholar 

  27. Nishimatsu K, Nakamoto Y, Miyake KK, Ishimori T, Kanao S, Toi M et al (2017) Higher breast cancer conspicuity on dbPET compared to WB-PET/CT. Eur J Radiol 90:138–145

    Article  PubMed  Google Scholar 

  28. Garcia Hernandez T, Vicedo Gonzalez A, Ferrer Rebolleda J, Sanchez Jurado R, Rosello Ferrando J, Brualla Gonzalez L et al (2016) Performance evaluation of a high resolution dedicated breast PET scanner. Med Phys 43:2261

    Article  PubMed  Google Scholar 

  29. Shinsuke Sasada N, Masumoto N, Goda K, Kajitani A, Emi T, Kadoya et al (2018) Dedicated breast PET for detecting residual disease after neoadjuvant chemotherapy in operable breast cancer: a prospective cohort study. Eur J Surg Oncol 44:444–448

    Article  PubMed  Google Scholar 

  30. Iima M, Nakamoto Y, Kanao S, Sugie T, Ueno T, Kawada M et al (2012) Clinical performance of 2 dedicated PET scanners for breast imaging: initial evaluation. J Nucl Med 53:1534–1542

    Article  PubMed  Google Scholar 

  31. Miyake K, Matsumoto K, Inoue M, Nakamoto Y, Kanao S, Oishi T et al (2014) Performance evaluation of a new dedicated breast PET scanner using NEMA NU4-2008 standards. J Nucl Med 55:1198–1203

    Article  PubMed  CAS  Google Scholar 

  32. Yu L, Yang W, Cai X, Shi D, Fan Y, Lu H (2010) Centrally necrotizing carcinoma of the breast: clinicopathological analysis of 33 cases indicating its basal-like phenotype and poor prognosis. Histopathology 57:193–201

    Article  PubMed  Google Scholar 

  33. Jimenez RE, Wallis T, Visscher DW (2001) Centrally necrotizing carcinomas of the breast: a distinct histologic subtype with aggressive clinical behavior. Am J Surg Pathol 25:331–337

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kazushi Marukawa and Masatsugu Tsujimura of Chuden Hospital for providing data regarding PET examinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Masumoto.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masumoto, N., Kadoya, T., Sasada, S. et al. Intratumoral heterogeneity on dedicated breast positron emission tomography predicts malignancy grade of breast cancer. Breast Cancer Res Treat 171, 315–323 (2018). https://doi.org/10.1007/s10549-018-4791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4791-1

Keywords

Navigation