Skip to main content

Advertisement

Log in

Downregulation of APE1 potentiates breast cancer cells to olaparib by inhibiting PARP-1 expression

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Targeting DNA repair mechanisms to induce apoptosis may be a promising strategy for breast cancer treatment. Olaparib is proved to have anticancer effect by inhibiting DNA repairing protein poly (ADP-ribose) polymerase (PARP). However, the cytotoxicity of olaparib is very limited to homologous recombination-proficient cells. This study aims to examine the effect and mechanism of olaparib treatment in breast cancer cell lines.

Methods

We investigated the cytotoxic effect of various doses of olaparib treatment to MCF-7 and ZR-75-1 cells in vitro. mRNA and protein levels of PARP and APE1 were examined by real-time PCR and western blot, respectively. APE1-deficient cell lines were created by RNA interference and used for in vitro cytotoxicity study as well as in vivo study.

Results

2 µM or higher concentrations of olaparib lead to significant cell death and ROS production. Moreover, olaparib treatment not only inhibits PARP1, but also reduces the expression of APE1 in both mRNA and protein levels. Deficiency of APE1 resulted in increased sensitivity of MCF-7 and ZR-75-1 cells to olaparib treatment. In vivo study showed that reduction of APE1 significantly reduced the volume and weight of MCF-7 xenografted tumors when treated with olaparib, which suggests the synergistic function of inhibition of APE1 in promoting antitumor effects of olaparib treatment.

Conclusion

To acquire better benefits for HR-proficient breast cancer patients, developing chemotherapeutic drugs antagonize APE1 would be an effective strategy to improve the clinical outcome of PARP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  2. Renoir JM, Marsaud V, Lazennec G (2013) Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol 85:449–465

    Article  CAS  PubMed  Google Scholar 

  3. Edson MA, Li J (2015) Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American Society of Clinical Oncology clinical practice guideline. Breast Dis 26:223–225

    Google Scholar 

  4. Long JP, Ji ZW, Jiang K, Wang ZY, Meng GM (2015) miR-193b modulates resistance to doxorubicin in human breast cancer cells by downregulating MCL-1. Biomed Res Int 2015:375574

    Google Scholar 

  5. Jeggo PA, Pearl LH, Carr AM (2016) DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer 16:35–42

    Article  CAS  PubMed  Google Scholar 

  6. Ryu KW, Kim DS, Kraus WL (2015) New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev 115:2453–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bryant HE, Schultz N, Thomas HD et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  CAS  PubMed  Google Scholar 

  8. Livraghi L, Garber JE (2015) PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med 13:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    Article  CAS  PubMed  Google Scholar 

  10. Matulonis UA, Penson RT, Domchek SM et al (2016) Olaparib monotherapy in patients with advanced relapsed ovarian cancer and a germline BRCA1/2 mutation: a multistudy analysis of response rates and safety. Ann Oncol 27:1013–1019

    Article  CAS  PubMed  Google Scholar 

  11. Kaufman B, Shapira-Frommer R, Schmutzler RK et al (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33:244–250

    Article  CAS  PubMed  Google Scholar 

  12. Gelmon KA, Tischkowitz M, Mackay H et al (2011) Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 12:852–861

    Article  CAS  PubMed  Google Scholar 

  13. Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  CAS  PubMed  Google Scholar 

  14. Sharma P, Klemp JR, Kimler BF et al (2014) Germline BRCA mutation evaluation in a prospective triple-negative breast cancer registry: implications for hereditary breast and/or ovarian cancer syndrome testing. Breast Cancer Res Treatm 145:707–714

    Article  CAS  Google Scholar 

  15. Dianov GL, Sleeth KM (2003) Dianova, II and Allinson SL: Repair of abasic sites in DNA. Mutat Res 531:157–163

    Article  CAS  PubMed  Google Scholar 

  16. Kakolyris S, Kaklamanis L, Engels K et al (1998) Human AP endonuclease 1 (HAP1) protein expression in breast cancer correlates with lymph node status and angiogenesis. Br J Cancer 77:1169–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Puglisi F, Barbone F, Tell G et al (2002) Prognostic role of Ape/Ref-1 subcellular expression in stage I-III breast carcinomas. Oncol Rep 9:11–17

    CAS  PubMed  Google Scholar 

  18. Sultana R, McNeill DR, Abbotts R et al (2012) Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. Int J Cancer 131:2433–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harris JL, Jakob B, Taucher-Scholz G, Dianov GL, Becherel OJ, Lavin MF (2009) Aprataxin, poly-ADP ribose polymerase 1 (PARP-1) and apurinic endonuclease 1 (APE1) function together to protect the genome against oxidative damage. Hum Mol Genet 18:4102–4117

    Article  CAS  PubMed  Google Scholar 

  20. Bi H, Ming L, Cheng R, Luo H, Zhang Y, Jin Y (2016) Liver extracellular matrix promotes BM-MSCs hepatic differentiation and reversal of liver fibrosis through activation of integrin pathway. J Tissue Eng Regen Med 11:2685–2698

  21. Huang X, Motea EA, Moore ZR et al (2016) Leveraging an NQO1 bioactivatable drug for tumor-selective use of poly(ADP-ribose) polymerase Inhibitors. Cancer Cell 30:940–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Balmana J, Tung NM, Isakoff SJ et al (2014) Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann Oncol 25:1656–1663

    Article  CAS  PubMed  Google Scholar 

  23. Del Conte G, Sessa C, von Moos R et al (2014) Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Br J Cancer 111:651–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi YE, Battelli C, Watson J et al (2014) Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells. Oncotarget 5:2678–2687

    PubMed  PubMed Central  Google Scholar 

  25. Verhagen CV, de Haan R, Hageman F et al (2015) Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells. Radiother Oncol 116:358–365

    Article  CAS  PubMed  Google Scholar 

  26. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947

    Article  CAS  PubMed  Google Scholar 

  27. van der Wijst MG, Huisman C, Mposhi A, Roelfes G, Rots MG (2015) Targeting Nrf2 in healthy and malignant ovarian epithelial cells: protection versus promotion. Mol Oncol 9:1259–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peuget S, Bonacci T, Soubeyran P, Iovanna J, Dusetti NJ (2014) Oxidative stress-induced p53 activity is enhanced by a redox-sensitive TP53INP1 SUMOylation. Cell Death Differ 21:1107–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li M, Wilson DM (2014) Human apurinic/apyrimidinic endonuclease 1. Antioxid Redox Signal 20:678–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelley MR, Georgiadis MM, Fishel ML (2012) APE1/Ref-1 role in redox signaling: translational applications of targeting the redox function of the DNA repair/redox protein APE1/Ref-1. Curr Mol Pharm 5:36–53

    Article  CAS  Google Scholar 

  31. Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK (2014) APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 46:e106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is funded by the Natural Science Foundation research project of Shaanxi Province, China (No. 2015JM8430), and the International Cooperative Project of Shaanxi province, China (No. 2016KW-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Kang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval and Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Dang, C., Min, W. et al. Downregulation of APE1 potentiates breast cancer cells to olaparib by inhibiting PARP-1 expression. Breast Cancer Res Treat 176, 109–117 (2019). https://doi.org/10.1007/s10549-019-05189-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05189-w

Keywords

Navigation