Skip to main content

Advertisement

Log in

The reciprocal association between mammographic breast density, hyaluronan synthesis and patient outcome

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Low mammographic breast density (MBD) and increased hyaluronan (HA) synthesis have been shown to have adverse effects on breast cancer prognosis. We aimed at elucidating the background of risk associated with mammographic characteristics, MBD and HA and its synthesizing isoforms in an attempt to uncover potential underlying biological mechanisms. MBD and mammographic characteristics of 270 patients were classified according to percentile density (very low density VLD, ≤25 %; mixed density MID, >25 %) and the BI-RADS 5th edition lexicon. Breast density and mammographic features were correlated with the localization and expression of HA, CD44, and HAS1-3 isoforms, and their combined effect on patients’ survivals was explored. VLD showed an increased level of HA-positive carcinoma cells and stromal HA, HAS2, and HAS3. Tumors presenting as masses had more HA-positive carcinoma cells and more stromal HAS2 and HAS3. Indistinct margin tumors showed more stromal HA and HAS3. Patients who combined both VLD breasts with either high HA in carcinoma cells or stroma showed a worse prognosis compared to low levels (carcinoma cells 58.0 vs. 80.5 %, p = 0.001; stroma 64.2 vs. 79.6 %, p = 0.017), while no similar HA-related effect was observed in MID breasts. Our findings suggest a strong reciprocal relationship between low MBD and HA expression and synthesis. The expression of both factors simultaneously leads to an especially adverse prognostic effect which might have an impact on treatment decision in the future. Moreover, HA around cancer cells may inhibit chemotherapy agents and antibody treatments from reaching cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MBD:

Mammographic breast density

HA:

Hyaluronan

HAS:

Hyaluronan synthase

HER2:

Human epidermal growth factor receptor 2

VLD:

Very low density

MID:

Mixed density

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  2. Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G (2005) Breast cancer. Lancet 365(9472):1727–1741

    Article  PubMed  Google Scholar 

  3. Killelea BK, Chagpar AB, Bishop J et al (2013) Is there a correlation between breast cancer molecular subtype using receptors as surrogates and mammographic appearance? Ann Surg Oncol 20(10):3247–3253

    Article  PubMed  Google Scholar 

  4. Masarwah A, Auvinen P, Sudah M et al (2015) Very low mammographic breast density predicts poorer outcome in patients with invasive breast cancer. Eur Radiol 25:1875–1882

    Article  PubMed  Google Scholar 

  5. Olsen AH, Bihrmann K, Jensen MB, Vejborg I, Lynge E (2009) Breast density and outcome of mammography screening: a cohort study. Br J Cancer 100(7):1205–1208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sironen RK, Tammi M, Tammi R, Auvinen PK, Anttila M, Kosma VM (2011) Hyaluronan in human malignancies. Exp Cell Res 317(4):383–391

    Article  CAS  PubMed  Google Scholar 

  7. Itano N, Sawai T, Atsumi F et al (2004) Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem 279(18):18679–18687

    Article  CAS  PubMed  Google Scholar 

  8. Tammi RH, Kultti A, Kosma VM, Pirinen R, Auvinen P, Tammi MI (2008) Hyaluronan in human tumors: pathobiological and prognostic messages from cell-associated and stromal hyaluronan. Semin Cancer Biol 18(4):288–295

    Article  CAS  PubMed  Google Scholar 

  9. Tiainen S, Tumelius R, Rilla K et al (2015) High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66:873–883

    Article  PubMed  Google Scholar 

  10. Turley EA, Noble PW, Bourguignon LY (2002) Signaling properties of hyaluronan receptors. J Biol Chem 277(7):4589–4592

    Article  CAS  PubMed  Google Scholar 

  11. Auvinen P, Tammi R, Kosma VM et al (2013) Increased hyaluronan content and stromal cell CD44 associate with HER2 positivity and poor prognosis in human breast cancer. Int J Cancer 132(3):531–539

    Article  CAS  PubMed  Google Scholar 

  12. Auvinen P, Rilla K, Tumelius R et al (2014) Hyaluronan synthases (HAS1-3) in stromal and malignant cells correlate with breast cancer grade and predict patient survival. Breast Cancer Res Treat 143(2):277–286

    Article  CAS  PubMed  Google Scholar 

  13. Whatcott CJ, Han H, Posner RG, Hostetter G, Von Hoff DD (2011) Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look. Cancer Discov 1(4):291–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Jacobetz MA, Chan DS, Neesse A et al (2013) Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62(1):112–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hamalainen K, Kosma VM, Eloranta ML et al (2010) Downregulated CD44 and hyaluronan expression in vulvar intraepithelial neoplasia and squamous cell carcinomas. Acta Obstet Gynecol Scand 89(1):108–119

    Article  PubMed  Google Scholar 

  16. Sickles EA, D’Orsi CJ, Bassett LW et al (2013) ACR BI-RADS® mammography. In: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of Radiology, Reston

  17. Senkus E, Kyriakides S, Penault-Llorca F et al (2013) Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 24 Suppl 6:vi7–vi23

    CAS  PubMed  Google Scholar 

  18. Goldhirsch A, Winer EP, Coates AS et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24(9):2206–2223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Theriault RL, Carlson RW, Allred C et al (2013) Breast cancer, version 3.2013: featured updates to the NCCN guidelines. J Natl Compr Canc Netw 11(7):753–760 quiz 761

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Adriance MC, Inman JL, Petersen OW, Bissell MJ (2005) Myoepithelial cells: good fences make good neighbors. Breast Cancer Res 7(5):190–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Deugnier MA, Teuliere J, Faraldo MM, Thiery JP, Glukhova MA (2002) The importance of being a myoepithelial cell. Breast Cancer Res 4(6):224–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pandey PR, Saidou J, Watabe K (2010) Role of myoepithelial cells in breast tumor progression. Front Biosci (Landmark Ed) 15:226–236

    Article  CAS  Google Scholar 

  23. Park J, Euhus DM, Scherer PE (2011) Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev 32(4):550–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    Article  CAS  PubMed  Google Scholar 

  25. Qu C, Rilla K, Tammi R, Tammi M, Kroger H, Lammi MJ (2014) Extensive CD44-dependent hyaluronan coats on human bone marrow-derived mesenchymal stem cells produced by hyaluronan synthases HAS1, HAS2 and HAS3. Int J Biochem Cell Biol 48:45–54

    Article  CAS  PubMed  Google Scholar 

  26. Bertolini F, Petit JY, Kolonin MG (2015) Stem cells from adipose tissue and breast cancer: hype, risks and hope. Br J Cancer 112(3):419–423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Auvinen PK, Parkkinen JJ, Johansson RT et al (1997) Expression of hyaluronan in benign and malignant breast lesions. Int J Cancer 74(5):477–481

    Article  CAS  PubMed  Google Scholar 

  28. Tammi RH, Tammi MI, Hascall VC, Hogg M, Pasonen S, MacCallum DK (2000) A preformed basal lamina alters the metabolism and distribution of hyaluronan in epidermal keratinocyte “organotypic” cultures grown on collagen matrices. Histochem Cell Biol 113(4):265–277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was received from Kuopio University Hospital-VTR funds (MT, PA, RV, RT), EVO funding (Grant Nos. 5063525, 5063532) (AM, RV, AS), the University of Kuopio Foundation (AM), grants from Mauri and Sirkka Wiljasalo (AM) and the Paavo Koskinen foundation (AM), Spearhed Funds of the University of Eastern Finland (Cancer Center of Eastern Finland) (RV, PA, VMK, AM), Sigrid Juselius Foundation (RT, MT), and Cancer societies of Finland (RV, AM, MS). Authors are thankful for Tuomas Selander for kindly providing statistical advice for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amro Masarwah.

Ethics declarations

Conflicts of Interest

MT received travel imbursement and an honorarium for a lecture at Halozyme Inc., San Diego, CA. The remaining authors declare that they have no other potential competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masarwah, A., Tammi, M., Sudah, M. et al. The reciprocal association between mammographic breast density, hyaluronan synthesis and patient outcome. Breast Cancer Res Treat 153, 625–634 (2015). https://doi.org/10.1007/s10549-015-3567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3567-0

Keywords

Navigation