Skip to main content

Advertisement

Log in

Cortactin gene amplification and expression in breast cancer: a chromogenic in situ hybridisation and immunohistochemical study

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Amplification of 11q13 is found in approximately 15% of breast cancers. Cyclin D1 (CCND1) has been reported to be the ‘driver’ of this amplicon, however, multiple genes map to the smallest region of amplification of 11q13. Out of these genes, cortactin (CTTN) has been shown to be consistently overexpressed at the mRNA level in tumours harbouring 11q13 amplification. The aims of this study are to define whether CTTN is consistently co-amplified with the main core of the 11q13 amplicon, whether it is consistently overexpressed when amplified and to determine correlations between CTTN amplification and overexpression with clinicopathological features of breast cancers and survival of breast cancer patients. CTTN and CCND1 chromogenic in situ hybridisation (CISH) probes and a validated monoclonal antibody against CTTN were applied to a tissue microarray of a cohort of breast cancers from patients treated with anthracycline-based chemotherapy. CTTN and CCND1 amplifications were found in 12.3 and 12.4% of cases, respectively. All cases harbouring CTTN amplification also displayed CCND1 amplification. High expression of CTTN was found in 10.8% of cases and was associated with CTTN amplification, expression of ‘basal’ markers and topoisomerase IIα. Exploratory subgroup analysis of tumours devoid of 11q13 amplification revealed that high expression of CTTN in the absence of CTTN gene amplification was associated with lymph node negative disease, lack of hormone receptors and FOXA1, expression of ‘basal’ markers, high Ki-67 indices, p53 nuclear expression, and basal-like and triple negative phenotypes. CTTN expression and CTTN gene amplification were not associated with disease-, metastasis-free and overall survival. In conclusion, CTTN is consistently co-amplified with CCND1 and expressed at higher levels in breast cancers harbouring 11q13 amplification, suggesting that CTTN may also constitute one of the drivers of this amplicon. CTTN expression is not associated with the outcome of breast cancer patients treated with anthracycline-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Weed SA, Parsons JT (2001) Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20:6418–6434

    Article  CAS  PubMed  Google Scholar 

  2. Weaver AM (2008) Cortactin in tumor invasiveness. Cancer Lett 265:157–166

    Article  CAS  PubMed  Google Scholar 

  3. Schuuring E, Verhoeven E, Mooi WJ et al (1992) Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. Oncogene 7:355–361

    CAS  PubMed  Google Scholar 

  4. Ammer AG, Weed SA (2008) Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton 65:687–707

    Article  CAS  PubMed  Google Scholar 

  5. Chin SF, Wang Y, Thorne NP et al (2007) Using array-comparative genomic hybridization to define molecular portraits of primary breast cancers. Oncogene 26:1959–1970

    Article  CAS  PubMed  Google Scholar 

  6. Natrajan R, Lambros MB, Rodriguez-Pinilla SM et al (2009) Tiling path genomic profiling of grade 3 invasive ductal breast cancers. Clin Cancer Res 15(8):2711–2722

    Article  CAS  PubMed  Google Scholar 

  7. Letessier A, Sircoulomb F, Ginestier C et al (2006) Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer 6:245

    Article  PubMed  Google Scholar 

  8. Hui R, Ball JR, Macmillan RD et al (1998) EMS1 gene expression in primary breast cancer: relationship to cyclin D1 and oestrogen receptor expression and patient survival. Oncogene 17:1053–1059

    Article  CAS  PubMed  Google Scholar 

  9. Reis-Filho JS, Savage K, Lambros MB et al (2006) Cyclin D1 protein overexpression and CCND1 amplification in breast carcinomas: an immunohistochemical and chromogenic in situ hybridisation analysis. Mod Pathol 19:999–1009

    Article  CAS  PubMed  Google Scholar 

  10. Al-Kuraya K, Schraml P, Torhorst J et al (2004) Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res 64:8534–8540

    Article  CAS  PubMed  Google Scholar 

  11. Courjal F, Theillet C (1997) Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer Res 57:4368–4377

    CAS  PubMed  Google Scholar 

  12. Oyama T, Kashiwabara K, Yoshimoto K et al (1998) Frequent overexpression of the cyclin D1 oncogene in invasive lobular carcinoma of the breast. Cancer Res 58:2876–2880

    CAS  PubMed  Google Scholar 

  13. Cuny M, Kramar A, Courjal F et al (2000) Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res 60:1077–1083

    CAS  PubMed  Google Scholar 

  14. Schuuring E, Verhoeven E, van Tinteren H et al (1992) Amplification of genes within the chromosome 11q13 region is indicative of poor prognosis in patients with operable breast cancer. Cancer Res 52:5229–5234

    CAS  PubMed  Google Scholar 

  15. Elsheikh S, Green AR, Aleskandarany MA et al (2008) CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat 109:325–335

    Article  CAS  PubMed  Google Scholar 

  16. Roy PG, Pratt N, Purdie CA et al (2009) High CCND1 amplification identifies a group of poor prognosis women with estrogen receptor positive breast cancer. Int J Cancer

  17. Hui R, Campbell DH, Lee CS et al (1997) EMS1 amplification can occur independently of CCND1 or INT-2 amplification at 11q13 and may identify different phenotypes in primary breast cancer. Oncogene 15:1617–1623

    Article  CAS  PubMed  Google Scholar 

  18. Jirstrom K, Stendahl M, Ryden L et al (2005) Adverse effect of adjuvant tamoxifen in premenopausal breast cancer with cyclin D1 gene amplification. Cancer Res 65:8009–8016

    PubMed  Google Scholar 

  19. Lundgren K, Holm K, Nordenskjold B et al (2008) Gene products of chromosome 11q and their association with CCND1 gene amplification and tamoxifen resistance in premenopausal breast cancer. Breast Cancer Res 10:R81

    Article  PubMed  Google Scholar 

  20. Ormandy CJ, Musgrove EA, Hui R et al (2003) Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat 78:323–335

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigo JP, Garcia LA, Ramos S et al (2000) EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck. Clin Cancer Res 6:3177–3182

    CAS  PubMed  Google Scholar 

  22. Bocanegra M, Bergamaschi A, Kim YH et al (2010) Focal amplification and oncogene dependency of GAB2 in breast cancer. Oncogene 29(5):774–779

    Google Scholar 

  23. Kwek SS, Roy R, Zhou H et al (2009) Co-amplified genes at 8p12 and 11q13 in breast tumors cooperate with two major pathways in oncogenesis. Oncogene 28:1892–1903

    Article  CAS  PubMed  Google Scholar 

  24. Chunder N, Mandal S, Roy A et al (2004) Analysis of different deleted regions in chromosome 11 and their interrelations in early- and late-onset breast tumors: association with cyclin D1 amplification and survival. Diagn Mol Pathol 13:172–182

    Article  PubMed  Google Scholar 

  25. Mottolese M, Orlandi G, Sperduti I et al (2007) Bio-pathologic characteristics related to chromosome 11 aneusomy and cyclin D1 gene status in surgically resected stage I and II breast cancer: Identification of an adverse prognostic profile. Am J Surg Pathol 31:247–254

    Article  PubMed  Google Scholar 

  26. Kao J, Pollack JR (2006) RNA interference-based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes. Genes Chromosom Cancer 45:761–769

    Article  CAS  PubMed  Google Scholar 

  27. Natrajan R, Weigelt B, Mackay A et al (2009) An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat. doi:10.1007/s10549-009-0501-3

  28. Marchio C, Iravani M, Natrajan R et al (2009) Mixed micropapillary-ductal carcinomas of the breast: a genomic and immunohistochemical analysis of morphologically distinct components. J Pathol 218:301–315

    Article  CAS  PubMed  Google Scholar 

  29. Marchio C, Iravani M, Natrajan R et al (2008) Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol 215:398–410

    Article  CAS  PubMed  Google Scholar 

  30. Marchio C, Natrajan R, Shiu KK et al (2008) The genomic profile of HER2-amplified breast cancers: the influence of ER status. J Pathol 216:399–407

    Article  CAS  PubMed  Google Scholar 

  31. Callagy G, Pharoah P, Chin SF et al (2005) Identification and validation of prognostic markers in breast cancer with the complementary use of array-CGH and tissue microarrays. J Pathol 205:388–396

    Article  CAS  PubMed  Google Scholar 

  32. Rodrigo JP, Garcia-Carracedo D, Garcia LA et al (2009) Distinctive clinicopathological associations of amplification of the cortactin gene at 11q13 in head and neck squamous cell carcinomas. J Pathol 217:516–523

    Article  CAS  PubMed  Google Scholar 

  33. Luo ML, Shen XM, Zhang Y et al (2006) Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res 66:11690–11699

    Article  CAS  PubMed  Google Scholar 

  34. Chuma M, Sakamoto M, Yasuda J et al (2004) Overexpression of cortactin is involved in motility and metastasis of hepatocellular carcinoma. J Hepatol 41:629–636

    Article  CAS  PubMed  Google Scholar 

  35. Bowden ET, Barth M, Thomas D et al (1999) An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18:4440–4449

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Tondravi M, Liu J et al (2001) Cortactin potentiates bone metastasis of breast cancer cells. Cancer Res 61:6906–6911

    CAS  PubMed  Google Scholar 

  37. Hill A, McFarlane S, Mulligan K et al (2006) Cortactin underpins CD44-promoted invasion and adhesion of breast cancer cells to bone marrow endothelial cells. Oncogene 25:6079–6091

    Article  CAS  PubMed  Google Scholar 

  38. Rothschild BL, Shim AH, Ammer AG et al (2006) Cortactin overexpression regulates actin-related protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 amplification. Cancer Res 66:8017–8025

    Article  CAS  PubMed  Google Scholar 

  39. Clark ES, Brown B, Whigham AS et al (2009) Aggressiveness of HNSCC tumors depends on expression levels of cortactin, a gene in the 11q13 amplicon. Oncogene 28:431–444

    Article  CAS  PubMed  Google Scholar 

  40. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    Article  CAS  PubMed  Google Scholar 

  41. Singletary SE, Connolly JL (2006) Breast cancer staging: working with the sixth edition of the AJCC Cancer Staging Manual. CA Cancer J Clin 56:37–47 quiz 50–51

    Article  PubMed  Google Scholar 

  42. Lambros MB, Simpson PT, Jones C et al (2006) Unlocking pathology archives for molecular genetic studies: a reliable method to generate probes for chromogenic and fluorescent in situ hybridization. Lab Invest 86:398–408

    Article  CAS  PubMed  Google Scholar 

  43. Tan DS, Lambros MB, Rayter S et al (2009) PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res 15:2269–2280

    Article  CAS  PubMed  Google Scholar 

  44. Mackay A, Tamber N, Fenwick K et al (2009) A high-resolution integrated analysis of genetic and expression profiles of breast cancer cell lines. Breast Cancer Res Treat 118:481–498

    Article  CAS  PubMed  Google Scholar 

  45. Detre S, Saclani Jotti G, Dowsett M (1995) A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol 48:876–878

    Article  CAS  PubMed  Google Scholar 

  46. Tan DS, Marchio C, Jones RL et al (2008) Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat 111:27–44

    Article  CAS  PubMed  Google Scholar 

  47. Mahler-Araujo B, Savage K, Parry S et al (2008) Reduction of E-cadherin expression is associated with non-lobular breast carcinomas of basal-like and triple negative phenotype. J Clin Pathol 61:615–620

    Article  CAS  PubMed  Google Scholar 

  48. Parry S, Savage K, Marchio C et al (2008) Nestin is expressed in basal-like and triple negative breast cancers. J Clin Pathol 61:1045–1050

    Article  CAS  PubMed  Google Scholar 

  49. Thorat MA, Marchio C, Morimiya A et al (2008) Forkhead box A1 expression in breast cancer is associated with luminal subtype and good prognosis. J Clin Pathol 61:327–332

    Article  CAS  PubMed  Google Scholar 

  50. Klingbeil P, Natrajan R, Everitt G et al (2010) CD44 is overexpressed in basal-like breast cancers but is not a driver of 11p13 amplification. Breast Cancer Res Treat 120:95–109

    Article  CAS  PubMed  Google Scholar 

  51. Savage K, Leung S, Todd SK et al (2008) Distribution and significance of caveolin 2 expression in normal breast and invasive breast cancer: an immunofluorescence and immunohistochemical analysis. Breast Cancer Res Treat 110:245–256

    Article  CAS  PubMed  Google Scholar 

  52. Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  CAS  PubMed  Google Scholar 

  53. Courjal F, Cuny M, Simony-Lafontaine J et al (1997) Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups. Cancer Res 57:4360–4367

    CAS  PubMed  Google Scholar 

  54. Chin SF, Teschendorff AE, Marioni JC et al (2007) High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8:R215

    Article  PubMed  Google Scholar 

  55. Hofman P, Butori C, Havet K et al (2008) Prognostic significance of cortactin levels in head and neck squamous cell carcinoma: comparison with epidermal growth factor receptor status. Br J Cancer 98:956–964

    Article  CAS  PubMed  Google Scholar 

  56. Lynch DK, Winata SC, Lyons RJ et al (2003) A Cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal growth factor receptor endocytosis and the actin cytoskeleton. J Biol Chem 278:21805–21813

    Article  CAS  PubMed  Google Scholar 

  57. Timpson P, Lynch DK, Schramek D et al (2005) Cortactin overexpression inhibits ligand-induced down-regulation of the epidermal growth factor receptor. Cancer Res 65:3273–3280

    CAS  PubMed  Google Scholar 

  58. Ren G, Helwani FM, Verma S et al (2009) Cortactin is a functional target of E-cadherin-activated Src family kinases in MCF7 epithelial monolayers. J Biol Chem 284:18913–18922

    Article  CAS  PubMed  Google Scholar 

  59. Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527

    Article  CAS  PubMed  Google Scholar 

  60. Huang F, Reeves K, Han X et al (2007) Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res 67:2226–2238

    Article  CAS  PubMed  Google Scholar 

  61. Finn RS, Dering J, Ginther C et al (2007) Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/“triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat 105:319–326

    Article  CAS  PubMed  Google Scholar 

  62. Tan M, Li P, Sun M et al (2006) Upregulation and activation of PKC alpha by ErbB2 through Src promotes breast cancer cell invasion that can be blocked by combined treatment with PKC alpha and Src inhibitors. Oncogene 25:3286–3295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded in part by Breakthrough Breast Cancer. K. J. Dedes is the recipient of a Swiss National Science Foundation [SNF] fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge S. Reis-Filho.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedes, K.J., Lopez-Garcia, MA., Geyer, F.C. et al. Cortactin gene amplification and expression in breast cancer: a chromogenic in situ hybridisation and immunohistochemical study. Breast Cancer Res Treat 124, 653–666 (2010). https://doi.org/10.1007/s10549-010-0816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0816-0

Keywords

Navigation