Skip to main content

Advertisement

Log in

Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth Weighting

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

A recently proposed iterated alternating sequential (IAS) MEG inverse solver algorithm, based on the coupling of a hierarchical Bayesian model with computationally efficient Krylov subspace linear solver, has been shown to perform well for both superficial and deep brain sources. However, a systematic study of its ability to correctly identify active brain regions is still missing. We propose novel statistical protocols to quantify the performance of MEG inverse solvers, focusing in particular on how their accuracy and precision at identifying active brain regions. We use these protocols for a systematic study of the performance of the IAS MEG inverse solver, comparing it with three standard inversion methods, wMNE, dSPM, and sLORETA. To avoid the bias of anecdotal tests towards a particular algorithm, the proposed protocols are Monte Carlo sampling based, generating an ensemble of activity patches in each brain region identified in a given atlas. The performance in correctly identifying the active areas is measured by how much, on average, the reconstructed activity is concentrated in the brain region of the simulated active patch. The analysis is based on Bayes factors, interpreting the estimated current activity as data for testing the hypothesis that the active brain region is correctly identified, versus the hypothesis of any erroneous attribution. The methodology allows the presence of a single or several simultaneous activity regions, without assuming that the number of active regions is known. The testing protocols suggest that the IAS solver performs well with both with cortical and subcortical activity estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. http://martinos.org/mne.

References

  • Aine CJ, Sanfratello L, Ranken D, Best E, MacArthur JA, Wallace T, Gilliam K, Donahue CH, Montano R, Bryant JE et al (2012) MEG-SIM: a web portal for testing MEG analysis methods using realistic simulated and empirical data. Neuroinformatics 10(2):141–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Algorri ME, Flores-Mangas F (2004) Classification of anatomical structures in MR brain images using fuzzy parameters. IEEE Trans Biomed Eng 51:1599–1608

    Article  PubMed  Google Scholar 

  • Attal Y, Schwartz D (2013) Assessment of subcortical source localization using deep brain activity imaging model with minimum norm operators: a MEG study. PLoS ONE 8:e59856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attal Y, Maess B, Friederici A, David O (2012) Head models and dynamic causal modeling of subcortical activity using magnetoencephalographic/electroencephalographic data. Rev Neurosci 23:141–158

    Article  Google Scholar 

  • Auranen T, Nummenmaa A, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Vehtari A, Sams M (2005) Bayesian analysis of the neuromagnetic inverse problem with \(\ell _p\)-norm priors. NeuroImage 26:870–884

    Article  PubMed  Google Scholar 

  • Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Proc Mag 18:14–30

    Article  Google Scholar 

  • Bernardo JM, Smith AFM (2004) Bayesian theory. Wiley, New York

    Google Scholar 

  • Brette R, Destexhe A (2012) Handbook of neural activity measurement. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Calvetti D, Pascarella A, Pitolli F, Somersalo E, Vantaggi B (2015) A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning. Inverse Probl 31:125005

    Article  Google Scholar 

  • Calvetti D, Pitolli F, Somersalo E, Vantaggi B (2018) Bayes meets Krylov: preconditioning CGLS for underdetermined systems. SIAM Rev. https://doi.org/10.1137/15M1055061.

    Article  Google Scholar 

  • Calvetti D, Hakula H, Pursiainen S, Somersalo E (2009) Conditionally Gaussian hypermodels for cerebral source localization. SIAM J Imaging Sci 2:879–909

    Article  Google Scholar 

  • Ciofolo C, Barillot C (2009) Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control. Med Image Anal 13:456–470

    Article  PubMed  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9:179–194

    Article  CAS  Google Scholar 

  • Dale MA, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Article  CAS  PubMed  Google Scholar 

  • de Munck JC, Vijn PCM, da Silva FH Lopes (1992) A random dipole model for spontaneous brain activity. IEEE Trans BME 39:791–804

    Article  Google Scholar 

  • Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980

    Article  PubMed  Google Scholar 

  • Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45:600–616

    Article  Google Scholar 

  • Gramfort A, Papadopoulos T, Olivi E, Clerc M (2010) Open MEEG: open source software for quasistatic bioelectromagnetics. Biomed Eng Online 9:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Parkkonen L, Hämäläinen MS (2014) MNE software for processing MEG and EEG data. NeuroImage 31:446–460

    Article  Google Scholar 

  • Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova G (2017) Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. NeuroImage 175:531–544

    Article  Google Scholar 

  • Henson RN, Mattout J, Phillips C, Friston KJ (2009) Selecting forward models for MEG source-reconstruction using model-evidence. NeuroImage 46:168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henson RN, Flandin G, Friston KJ, Mattout J (2010) A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp 31:1512–1531

    Article  PubMed  PubMed Central  Google Scholar 

  • Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–498

    Article  Google Scholar 

  • Hämäläinen MS, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions. Report TKK-F-A559

  • Huizenga HM, JaC De Munck, Waldorp LJ, Grasman RPPP (2002) Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model. IEEE Trans BME 49:533–539

    Article  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  • Kiebel SJ, Daunizeau J, Phillips C, Friston KJ (2008) Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG. NeuroImage 39:728–741

    Article  PubMed  Google Scholar 

  • Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulos T (2005) A common formalism for the integral formulations of the forward EEG problem. IEEE Trans Med Imaging 24:12–28

    Article  PubMed  Google Scholar 

  • Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS (2006a) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage 31:160–171

    Article  PubMed  Google Scholar 

  • Lin FH, Belliveau JW, Dale AM, Hämäläinen MS (2006b) Distributed current estimates using cortical orientation constraints. Hum Brain Mapp 27:1–13

    Article  PubMed  Google Scholar 

  • Lopez JD, Litvak V, Espinosa JJ, Friston K, Barnes GR (2014) Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage 84:476–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucka F, Pursiainen S, Burger M, Wolters CH (2012) Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents. NeuroImage 61:1364–1382

    Article  PubMed  Google Scholar 

  • Mattout J, Phillips C, Penny WD, Rugg MD, Friston KJ (2006) MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage 30:753–767

    Article  PubMed  Google Scholar 

  • Molins A, Stufflebeam SM, Brown EN, Hämáläinen MS (2008) Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation. Neuroimage 42(3):1069–1077

    Article  CAS  Google Scholar 

  • Mosher JC, Spencer ME, Leahy RM, Lewis PS (1993) Error bounds for EEG and MEG dipole source localization. Electroenceph clin Neurophysiol 86:303–321

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan SS, Portniaguine O, Hwang D, Johnson C, Sekihara K (2006) Controlled support MEG imaging. NeuroImage 33:878–885

    Article  PubMed  PubMed Central  Google Scholar 

  • Nummenmaa A, Auranen T, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Sams M, Vehtari A (2007a) Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods. NeuroImage 35:669–685

    Article  PubMed  Google Scholar 

  • Nummenmaa A, Auranen T, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Sams M, Vehtari A (2007b) Automatic relevance determination based hierarchical Bayesian MEG inversion in practice. NeuroImage 3:876–889

    Article  Google Scholar 

  • Owen JP, Wipf DP, Attias HT, Sekihara K, Nagarajan SS (2012) Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data. NeuroImage 60:305–323

    Article  PubMed  Google Scholar 

  • Parkkonen L, Fujiki N, Mäkelä JP (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30:1772–1782

    Article  PubMed  Google Scholar 

  • Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. Int J Bioelectromagn 1:75–86

    Google Scholar 

  • Sato M, Yoshioka T, Kajihara S, Toyama K, Goda N, Doya K, Kawato M (2004) Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage 23:806–826

    Article  PubMed  Google Scholar 

  • Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. NeuroImage 46:1004–1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comp Intell Neurosci 2011:879716

    Google Scholar 

  • Trujillo-Barreto NJ, Aubert-Vázquez E, Valdés-Sosa PA (2004) Bayesian model averaging in EEG/MEG imaging. NeuroImage 21:1300–1319

    Article  PubMed  Google Scholar 

  • Uutela K, Hämäläinen MS, Somersalo E (1999) Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10:173–180

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Fuchs M, Kastner J (2004) Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topogr 16:277–280

    Article  Google Scholar 

  • Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging. NeuroImage 44:947–966

    Article  PubMed  Google Scholar 

  • Wipf DP, Owen JP, Attias HT, Sekihara K, Nagarajan SS (2010) Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. NeuroImage 49:641–655

    Article  PubMed  Google Scholar 

  • Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was completed during the visit of DC and ES at University of Rome “La Sapienza” (Visiting Researcher/Professor Grant 2015). The hospitality of the host university is kindly acknowledged. The work of ES was partly supported by NSF, Grant DMS-1312424. The work of DC was partially supported by grants from the Simons Foundation (#305322 and # 246665) and by NSF, Grant DMS-1522334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Calvetti.

Additional information

Handling Editor: Christophe Grova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10548_2018_670_MOESM1_ESM.pdf

Supplementary material Figure S1 Mapping of the brain activity to 85 different BRs over 100 simulations using synthetic data corresponding to randomly generated activity patches in the right frontal pole, indicated in red in the list of the BRs reconstructed with, respectively, IAS (a), wMNE (b), dSPM (c) and sLORETA (d). The histograms bin the average activity in each BR: in red the BRs of the left hemisphere and in black the ones of the right hemisphere. (pdf 79.7KB)

10548_2018_670_MOESM2_ESM.pdf

Supplementary material Figure S2 Mapping of the brain activity to 85 different BRs over 100 simulations using synthetic data corresponding to randomly generated activity patches in the left amygdala, indicated in red in the list of the BRs reconstructed with, respectively, IAS (a), wMNE (b), dSPM (c) and sLORETA (d). The histograms bin the average activity in each BR: in red the BRs of the left hemisphere and in black the ones of the right hemisphere. (pdf 79.6KB)

Appendix

Appendix

Interpretation of Hyperparameters

In Calvetti et al. (2015), the interpretation of the hyperparameters \(\beta \in {\mathbb {R}}\) and \(\theta ^*\in {\mathbb {R}}^N\) was discussed: it was shown that \(\beta \) allows the user to control the sparsity of the IAS solution, while the empirical Bayesian approach provided a way to relate \(\theta ^*\) to the sensitivity scaling. We summarize here the analysis on hyperparameters, developing the discussion of \(\theta ^*\) further, so that the parameter tuning can be done easily and semi-automatically.

Parameter \(\beta \) and Control of Sparsity

In Calvetti et al. (2015), it was proved (Theorem 2.1) that the sequential minimization that constitutes the core of the IAS algorithm can be interpreted as a fixed point iteration to find a minimizer \(\hat{Q} = [\hat{\mathbf {q}}_1,\hat{\mathbf {q}}_2,\ldots ,\hat{\mathbf {q}}_n]^{\mathsf {T}}\in {\mathbb {R}}^{3n}\) of the energy functional (3),

$$\begin{aligned} \hat{Q} = {\mathrm{argmin}}\left\{ {{\mathcal {E}}}(Q,S(Q))\right\} , \quad \hat{\varTheta } = S(\hat{Q}), \end{aligned}$$

where \(\hat{\varTheta } = [\hat{\theta }_1;\hat{\theta }_2;\ldots ,\hat{\theta }_n]\in {\mathbb {R}}^n\), and \(S:{\mathbb {R}}^{3n} \rightarrow {\mathbb {R}}^n\) is defined componentwise as

$$\begin{aligned} \theta _j = S_j(\mathbf {q}_j) = \theta _j^*\left( \frac{\eta _j}{2} + \sqrt{ \frac{\eta _j^2}{4} + \frac{\Vert \mathbf {q}_j\Vert _{{{\mathsf {C}}}_j}^2}{2\theta _j^*}} \right) ,\quad \eta _j = \beta _j -\frac{5}{2}, \quad 1\le j\le n. \end{aligned}$$

Furthermore, it was shown that if we write \(\beta _j = 5/2 + \eta \), \(1\le j\le n\), then, as \(\eta \rightarrow 0^+\), we have the asymptotic expression

$$\begin{aligned} {{\mathcal {E}}}( Q, S(Q)) = \frac{1}{2} \Vert b -\sum _{j=1}^n {\mathsf {M}}_j\mathbf {q}_j\Vert ^2_{{\mathsf {\Sigma }}} + {\sqrt{2}} \sum _{j=1}^n \frac{ \Vert \mathbf {q}_j\Vert _{{{\mathsf {C}}}_j}}{\sqrt{\theta _j^*}} + {{\mathcal {O}}}(\eta ). \end{aligned}$$
(7)

In particular, the penalty term in the above expression is a weighted \(\ell ^1\)-norm for the dipole amplitudes that are measured in the metric defined by the anatomical prior matrices \({{\mathsf {C}}}_j\). This argument demonstrates that at the limit, the IAS algorithm provides an effective algorithm for finding a weighted minimum current estimate (MCE), with the modification given by the anatomical prior (Uutela et al. 1999). In conclusion, we see that the role of the hyperparameter \(\beta \) is to control the sparsity of the IAS estimate. In Calvetti et al. (2015), this effect was demonstrated using numerical simulations.

Parameter \(\theta ^*\) and Sensitivity

The asymptotic expression (7) is indicative also from the point of view of the interpretation of \(\theta _j^*\). It is well-known that MEG algorithms based on penalized minimization of the fidelity to data tend to favor superficial sources, and to compensate this effect, a sensitivity weight is often introduced (see, e.g. Lin et al. 2006a). From the Bayesian point of view, sensitivity weighting is a problematic practice, since traditionally the prior should be independent of the observation model, a condition that the sensitivity weight does not satisfy. However, it is possible to find a satisfactory Bayesian interpretation for \(\theta _j^*\) so that it effectively works as a sensitivity weight. The connection between sensitivity and hypermodels is built through the analysis of the signal-to-noise ratio as follows. Consider the linear forward model

$$\begin{aligned} b = {\mathsf {M}}Q + \varepsilon = \sum _{j=1}^n {\mathsf {M}}_j\mathbf {q}_j + \varepsilon = b_0 +\varepsilon ,\quad \varepsilon \sim {{\mathcal {N}}}(0,{{\mathsf {\Sigma }}}). \end{aligned}$$

To estimate the expected power of the noiseless signal appearing in the signal-to-noise ratio defined in (4), observe that from the prior model, conditional on \(\varTheta \in {\mathbb {R}}^n\), we have

$$\begin{aligned} {\mathsf {E}}\{\Vert b_0\Vert ^2\mid \varTheta \} = \sum _{j=1}^n \theta _j{\mathrm{trace}}\left( {\mathsf {M}}_j {{\mathsf {C}}}_j {\mathsf {M}}_j^{{\mathsf {T}}}\right) = \sum _{j=1}^n \theta _j \Vert {\mathsf {M}}_j{{\mathsf {C}}}_j^{1/2}\Vert ^2_\mathrm{F}, \end{aligned}$$

where the subscript refers to the Frobenius norm of the matrix. Furthermore, by using the gamma hyperprior model \(\theta _j \sim \varGamma (\beta ,\theta _j^*)\) for the vector \(\varTheta \), we arrive at

$$\begin{aligned} {\mathsf {E}}\{\Vert b_0\Vert ^2\} = \sum _{j=1}^n {\mathsf {E}}\{\theta _j\} \Vert {\mathsf {M}}_j{{\mathsf {C}}}_j^{1/2}\Vert ^2_\mathrm{F} = \sum _{j=1}^n \beta \theta _j^* \Vert {\mathsf {M}}_j{{\mathsf {C}}}_j^{1/2}\Vert ^2_\mathrm{F}. \end{aligned}$$

The choice of the hyperparameters \(\theta _j^*\) must therefore be compatible of what we a priori assume about the distribution of the activity and the resulting SNR. To begin with, assume that we have a reason to believe that only one source is active, but we do not know which one. Then, by the definition (4) of SNR, the active source \(j_1\) must satisfy

$$\begin{aligned} \beta \theta _{j_1}^* \Vert {\mathsf {M}}_{j_1}{{\mathsf {C}}}_{j_1}^{1/2}\Vert ^2_\mathrm{F} = ({\mathrm{SNR}}-1)\times {\mathrm{trace}}({\mathsf {\Sigma }}),\quad \text{ or } \quad \theta _{j_1} ^*= \frac{({\mathrm{SNR}}-1)\times {\mathrm{trace}}({\mathsf {\Sigma }})}{\beta \Vert {\mathsf {M}}_{j_1}{{\mathsf {C}}}_{j_1}^{1/2}\Vert ^2_\mathrm{F}}. \end{aligned}$$

Finally, assume that we only have a prior idea of how many non-zero sources may be active, and we express this belief in a form of a probability density

$$\begin{aligned} {\mathsf {P}}\{\# \text{ of } \text{ active } \text{ sources } \text{= } k\} =p_k, 1\le k\le n, \end{aligned}$$

where \(\sum _k p_k = 1\). If we expect that out of the n dipoles, it is reasonable to expect that \(\overline{k} = sn\) are active, a binomial distribution can be used for \(p_k\), \(k_k\sim {\mathrm{Binom}}(n,s)\), \(0<s<1\); in practice the binomial can be approximated by a Poisson distribution, \(p_k\sim {\mathrm{Poisson}}(\overline{k})\) with mean \(\overline{k}\) provided by the user. Using the previous result, conditioned on k, we arrive at the scaling law

$$\begin{aligned} \theta _{j} ^*= \frac{C}{ \Vert {\mathsf {M}}_j{{\mathsf {C}}}_j^{1/2}\Vert ^2_\mathrm{F}}, \quad 1\le j\le n, \end{aligned}$$

with

$$\begin{aligned} C = ({\mathrm{SNR}}-1)\times {\mathrm{trace}}({\mathsf {\Sigma }}) \, \sum _{k=1}^n\frac{p_k}{k}. \end{aligned}$$

This argument confirms that, in order to match the model with the SNR, the parameters \(\theta _j^*\) should indeed be chosen to be inversely proportional to the sensitivity.

Construction of the Activity Patch

To select the vertices in the activity patch \({\mathcal {P}}\), we first pick randomly a seed vertex from the BR of interest, then grow the patch by adding iteratively the neighboring vertices, pruning off at each step those that fall outsize the pertinent BR, and stopping the process as soon as the desired number \(N_{\mathcal {P}}\) of vertices have been included. The selected nodes along with the edges of the triangular mesh form a local graph. To generate the activity in the patch, we start by computing a positive graph Laplacian of the patch, which is the matrix \({\mathsf {L}}\in {\mathbb {R}}^{N_{\mathcal {P}}\times N_{\mathcal {P}}}\) with entries

$$\begin{aligned} L_{i,j} = \left\{ \begin{array}{ll} -{\mathrm{deg}}(v_i) &{} \hbox {if} \ i=j, \\ 1 &{} \hbox {if} \ i\ne j \ \hbox {and} \ v_i \ \hbox {is adjacent to} \ v_j, \\ 0 &{} \hbox {otherwise}, \end{array} \right. \end{aligned}$$

where \({\mathrm{deg}}(v_i)\) is the number of the edges that terminate at the vertex \(v_i\).

After defining a correlation length \(\lambda \), given in units of the number of steps, we draw a random amplitude vector by setting

$$\begin{aligned} Q = ({\mathsf {L}}+ \lambda ^2 {\mathsf {I}}_{N_{\mathcal {P}}})^{-1}W, \end{aligned}$$

where \({\mathsf {I}}_{N_{\mathcal {P}}}\in {\mathbb {R}}^{N_{\mathcal {P}}\times N_{\mathcal {P}}}\) is the unit matrix and \(W\in {\mathbb {R}}^{N_{\mathcal {P}}}\) is a standard normal Gaussian random vector, that is, \(W\sim {{\mathcal {N}}}(0,{\mathsf {I}}_{N_{\mathcal {P}}})\). The amplitudes are scaled so that the amplitude of the dipole at the seed vertex is one. Finally, we draw the dipole moment directions from the anatomical prior, making sure that adjacent dipoles are not pointing in the opposite sides of the cortex patch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvetti, D., Pascarella, A., Pitolli, F. et al. Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth Weighting. Brain Topogr 32, 363–393 (2019). https://doi.org/10.1007/s10548-018-0670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-018-0670-7

Keywords

Navigation