Skip to main content
Log in

Large-Eddy Simulation of Erosion and Deposition over Multiple Two-Dimensional Gaussian Hills in a Turbulent Boundary Layer

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We investigate the effects of one or more hills on the solid-particle saltation layer, and focus on the effect of the recirculation zone that plays an important role in solid-particle erosion or entrapment. The aerodynamic features of the flow have been presented previously (Huang et al. in Environ Fluid Mech 18:581–609, 2018) and the influence of hill separation was discussed in light of the classification deduced from the urban canopy scheme of Oke (Energy Build 11:103–113, 1988). Here, large-eddy simulations (LES) coupled with Lagrangian tracking of solid particles over multiple two-dimensional Gaussian hills in a turbulent boundary layer are performed using the atmospheric Advanced Regional Prediction System. Models for the interaction of particles with the soil are used, especially for take-off and rebound, and the boundary layer at different external velocities is first simulated. Numerical results are compared with experiments performed in our laboratory (Simoëns et al. in Procedia IUTAM 17:110–118, 2015) to collect particle concentration and velocity profiles, with the different forces acting on the particles at the wall analyzed. Accumulation and erosion zones are investigated regarding the shear velocity, and different fluxes as function of the Shields number are defined and discussed. Lower momentum transfer and exchange between the recirculation region and the mixing zone in the wake-flow regime result in an increase in the number of trapped particles compared with the skimming-flow regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aguirre C, Brizuela AB, Vinkovic I, Simoëns S (2006) A subgrid Lagrangian stochastic model for turbulent passive and reactive scalar dispersion. Heat Fluid Flow 27:627–635

    Article  Google Scholar 

  • Almeida GP, Durao DFG, Heitor MV (1993) Wake flows behind two-dimensional model hills. Exp Therm Fluid Sci 7:87–101

    Article  Google Scholar 

  • Anderson RS, Haff PK (1991) Wind modification and bed response during saltation of sand in air, Aeolian Grain Transport 1. Springer, Vienna, pp 21–51

    Google Scholar 

  • Bagnold RA (1941) The physics of wind blown sand and desert dunes. Methuen, London

    Google Scholar 

  • Basu S, Lacser A (2017) A cautionary note on the use of Monin–Obukhov similarity theory in very high-resolution large-eddy simulations. Boundary-Layer Meteorol 163:344–351

    Article  Google Scholar 

  • Beladjine D, Ammi M, Oger L, Valance A (2007) Collision process between an incident bed and a three-dimensional granular packing. Phys Rev E 75:061305

    Article  Google Scholar 

  • Boëdec T, Simoëns S (2001) Simultaneous velocity and concentration measurements using Mie scattering and particle image velocimetry in a turbulent air jet, simultaneous velocity and concentration measurements using Mie scattering and particle image velocimetry in a turbulent air jet. Exp Fluids 16(3):273–281

    Google Scholar 

  • Cao S, Tamura T (2006) Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill. J Wind Eng Ind Aerodyn 94:1–19

    Article  Google Scholar 

  • Casulli V, Cheng RT (1992) Semi-implicit finite difference methods for the three-dimensional shallow water flow. Int J Numer Methods Fluids 15:629–648

    Article  Google Scholar 

  • Chapman C, Walker IJ, Hesp PA, Bauer BO, Davidson-Arnott RGD, Oller-head J (2013) Reynolds stress and sand transport over a foredune. Earth Surf Process Landf 38:1735–1747

    Article  Google Scholar 

  • Claudin P, Wiggs GFS, Andreotti B (2013) Field evidence for the upwind velocity shift at the rest of low dunes. Boundary-Layer Meteorol 148:195–206

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New York

    Google Scholar 

  • Creyssels M, Dupont P, El Moctar Ould, Valance A, cantat A, Jenkins JT, Pasini JM, Rasmussen KR (2009) Saltating particles in a turbulent boundary layer: experiment and theory. J Fluid Mech 625:47–28

    Article  Google Scholar 

  • Descamps I, Harion JL, Baudoin B (2005) Taking-off model of particles with a wide size distribution. Chem Eng Process 44:159–166

    Article  Google Scholar 

  • Diplat P, Dancey CL (2013) Coherent flow structures, initiation of motion, sediment transport and morphological feedbacks in rivers. In: Venditti JG, Best JL, Church M, Hardy RJ (eds) Coherent structures at earth’s surface. Wiley, Chichester, pp 289–307

    Chapter  Google Scholar 

  • Dupont S, Bergametti G, Marticorena B, Simoëns S (2013) Modeling saltation intermittency. J Geophys Res Atmos 118:7109–7128

    Article  Google Scholar 

  • Dupont S, Bergametti G, Simoëns S (2014) Modeling aeolian erosion in presence of vegetation. J Geophys Res Earth Surf 119:168–187

    Article  Google Scholar 

  • Durán O, Claudin P, Andreotti B (2011) On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res 3:243–270

    Article  Google Scholar 

  • Dwivedi A, Melville B, Shamseldin AY (2010) Hydrodynamic forces generated on a spherical sediment particle during entrainment. J Hydraul Eng 136:756–769

    Article  Google Scholar 

  • Elghobashi S (1994) On the predicting particle-laden turbulent flows. App Sci Res 52:309–329

    Article  Google Scholar 

  • Fackrell JE, Robins AG (1982) Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. J Fluid Mech 117:1–26

    Article  Google Scholar 

  • Foucaut JM, Stanislas M (1996) Take-off threshold velocity of solid particles lying under a turbulent boundary layer. Exp Fluids 20:377–382

    Article  Google Scholar 

  • Gore R, Crowe CT (1989) Effect of particle size on modulating turbulent intensity. Int J Multiph Flow 15(2):279–285

    Article  Google Scholar 

  • Hofland B, Batjes JA, Booij R (2005) Measurement of fluctuating pressures on coarse bed material. J Hydraul Eng 131(9):770–781

    Article  Google Scholar 

  • Huang G (2015) Numerical simulation of solid particle transport in atmospheric boundary-layer over obstacles, Thèse Ecole Centrale de Lyon

  • Huang G, Simoëns S, Vinkovic I, Le Ribault C, Dupont S, Bergametti G (2016) Law-of-the-wall in a boundary-layer over regularly distributed roughness elements. J Turbul 17:1–24

    Article  Google Scholar 

  • Huang G, Simoëns S, Vinkovic I, Le Ribault C (2018) Part I A priori study of erosion and deposition with large eddy simulation of turbulent flow over multiple 2D sandy Gaussian hills. Environ Fluid Mech 18(3):581–609

    Article  Google Scholar 

  • Jackson PS, Hunt JCR (1975) Turbulent wind flow over a low hill. Q J R Meteorol Soc 101:929–955

    Article  Google Scholar 

  • Kok JF, Renno N (2009) A comprehensive numerical model of steady state saltation (COMSALT). J Geophys Res Atmos 114:17204

    Article  Google Scholar 

  • Le Ribault C, Vignon JM, Simoëns S (2014) LES/Lagrangian modelling for the dispersion of reactive species behind an obstacle in a turbulent boundary layer. JP J Heat Mass Transf 9(1):21–55

    Google Scholar 

  • Lund T, Wu X, Squires K (1998) Generation of turbulent inflow data for spatially developing boundary layer simulations. J Comput Phys 140:233–258

    Article  Google Scholar 

  • Mollinger AM, Nieuwstadt FTM (1996) Measurement of the lift force on a particle fixed to the wall in the viscous sublayer of a fully developed turbulent boundary layer. J Fluid Mech 316:285–306

    Article  Google Scholar 

  • Nabi M, de Vriend HJ, Mosselman E, Sloff CJ, Shimizu Y (2013a) Detailed simulation of morphodynamics: 2 Sediment pickup, transport and deposition. Water Resour Res 49:1–17

    Article  Google Scholar 

  • Nabi M, de Vriend HJ, Mosselman E, Sloff CJ, Shimizu Y (2013b) Detailed simulation of morphodynamics: 3 Ripples and dunes. Water Resour Res 49:5930–5943

    Article  Google Scholar 

  • Nabi M, de Vriend HJ, Mosselman E, Sloff CJ, Shimizu Y (2012) Detailed simulation of morphodynamics: 1 Hydrodynamic model. Water Resour Res 48: https://doi.org/10.1029/2012WR011911

  • Ohba R, Hara T, Nakamura S, Ohya Y, Uchida T (2002) Gas diffusion over an isolated hill under neutral, stable and unstable conditions. Atmos Environ 36:5697–5707

    Article  Google Scholar 

  • Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11:103–113

    Article  Google Scholar 

  • Owen PR (1964) Saltation of uniform grains in air. J Fluid Mech 20:225–242

    Article  Google Scholar 

  • Sardina G, Picano F, Schlatter P, Brandt L, Casciola CM (2014) Statistics of particle accumulation in spatially developing turbulent boundary layers. Flow Turbul Combust 92(1–2):27–40

    Article  Google Scholar 

  • Schmeeckle MW, Nelson JM, Shreve RL (2007) Forces on stationary particles in near-bed turbulent flows. J Geophys Res Earth Surf 112:F02003

    Article  Google Scholar 

  • Shao Y (2009) Physics and modeling of wind erosion, 37, Atmospheric and Oceanographic Sciences Library, Springer Netherlands, Dordrecht

  • Shao Y, Li A (1999) Numerical modelling of saltation in the atmospheric surface layer. Boundary-layer Meteorol 91:199–225

    Article  Google Scholar 

  • Shields A (1936) Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen des Versuchsanstalt fur Wasserbau and Shiffbau 26:101

    Google Scholar 

  • Simoëns S, Wallace JM (2008) The flow across a street canyon of variable width—part 2: scalar dispersion for the flow across a street canyon of variable width. Atmos Environ 42(10):2489–2503

    Article  Google Scholar 

  • Simoëns S, Ayrault M, Wallace J (2007) The flow across a street canyon of variable width—part 1: kinematic description. Atmos Environ 41:9002–9017

    Article  Google Scholar 

  • Simoëns S, Saleh S, Le Ribault C, Belmadi M, Zegadi R, Allag F, Vignon JM, Huang G (2015) Influence of Gaussian hill on concentration of solid particles in suspension inside Turbulent Boundary Layer. Procedia IUTAM 17:110–118

    Article  Google Scholar 

  • Sorensen M (1991) An analytic model of wind-blown sand transport Acta Mechanica Supplementum. Springer, Vienna, pp 67–81

    Google Scholar 

  • Spalart PR (1988) Direct simulation of a turbulent boundary layer up to R\(\theta \)=1410. J Fluid Mech 187:61–98

    Article  Google Scholar 

  • Spalding DB (1961) A single formula for the “law of wall”. J Appl Mech 28:455

    Article  Google Scholar 

  • Sumer BM, Chua L, Cheng NS (2003) Influence of turbulence on bed load sediment transport. J Hydraul Eng 129:585–596

    Article  Google Scholar 

  • Taylor PA, Mason PJ, Bradley EF (1987) Boundary-layer flow over low hills–a review. Boundary-Layer Meteorol 39:107–132

    Article  Google Scholar 

  • Vinçont JY, Simoëns S, Ayrault M, Wallace JM (2000) Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and down stream of an obstacle. J Fluid Mech 424:127–167

    Article  Google Scholar 

  • Vinkovic (2005) Dispersion et mélange turbulents de particules solides et de gouttelettes par une simulation des grandes échelles et une modélisation stochastique lagrangienne. Application à la pollution de l’atmosphère. Thèse Ecole Centrale de Lyon

  • Vinkovic I, Aguirre C, Simoëns S, Ayrault M (2006a) Large eddy simulation of the dispersion of solid particles in a turbulent boundary layer. Boundary-Layer Meteorol 121:283–311

    Article  Google Scholar 

  • Vinkovic I, Aguirre C, Simoëns S (2006b) Large eddy simulation and Lagrangian stochastic modeling of passive scalar dispersion in a turbulent boundary layer. J Turbul 7(30). https://doi.org/10.1080/14685240600595537

    Article  Google Scholar 

  • Wallace JM, Eckelmann H, Brodkey RS (1972) Structure of the Reynolds stress near the wall. J Fluid Mech 54:65–92

    Article  Google Scholar 

  • Wang Z, Huang N (2017) Numerical simulation of the falling snow deposition over complex terrain. J Geophys Atmos 122(2):980–1000

    Article  Google Scholar 

  • Weng WS, Hunt JCR, Carruthers DJ, Warren A, Wiggs GFS, Livingstone I, Castro I (1991) Air flow and sand transport over sand-dunes. Acta Mech Suppl 2:1–22

    Article  Google Scholar 

  • Wood N (1995) The onset of separation in neutral, turbulent flow over hills. Boundary-Layer Meteorol 76:137–164

    Article  Google Scholar 

  • Xue M, Droegemeier K, Wong V, Shapiro A, Brewster K (1995) ARPS version 4.0 Users Guide

  • Xu B, Zhang J, Huang N, Gong K, Liu Y (2018) Characteristics of turbulent aeolian sand movement over straw checkerboard barriers and formation mechanisms of their internal erosion form. J Geophys Res Atmos (online)

  • Yamamoto Y, Potthoff M, Tanaka T, Kashijima T, Tsuji Y (2001) Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effects of considering inter-particle collisions. J Fluid Mech 442:303–334

    Article  Google Scholar 

  • Yoshizawa A, Horiuti K (1995) A statistically-derived subgrid-scale kinetic models for large eddy simulation of turbulent. J Phys Soc Jpn 54(8):2834–2839

    Article  Google Scholar 

  • Zimon AD (1969) Adhesion of dust and powder. Springer, Dordrecht

    Book  Google Scholar 

Download references

Acknowledgements

We acknowledge NFSC/ANR Chinese/French program PEDO-COTESOF. This work was granted access to the HPC resources of CINES. Numerical simulations were also performed on the P2CHPD parallel cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Le Ribault.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Le Ribault, C., Vinkovic, I. et al. Large-Eddy Simulation of Erosion and Deposition over Multiple Two-Dimensional Gaussian Hills in a Turbulent Boundary Layer. Boundary-Layer Meteorol 173, 193–222 (2019). https://doi.org/10.1007/s10546-019-00463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-019-00463-2

Keywords

Navigation