Skip to main content
Log in

Large-eddy simulations for hill terrains: validation with wind-tunnel and field measurements

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Development and validation of large-eddy simulation (LES) framework to study atmospheric boundary layer flows over complex terrains is reported here. The LES model uses the fourth-order time-accurate Runge–Kutta scheme and a fractional step method. The inflow boundary conditions are generated by using the so-called recycling (or mapping) technique. Evaluation of potential in-land wind park locations is the main application of the validated model. In this work, LES are carried out for turbulent boundary-layer flows over both simple and complex hill geometries. The prediction of the flow separation and reattachment length for a steeper wind-tunnel hill was closer to the measurements than previous numerical studies reported by other authors for the same hill geometry. For the complex hill case, the LES model showed good agreement with full-scale measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agafonova O, Koivuniemi A, Chaudhari A, Hämäläinen J (2014) Limits of WAsP modelling in comparison with CFD for wind flow over two-dimensional hills. In: Proceedings of European wind energy association conference (EWEA-2014), Barcelona, Spain

  • Allen T, Brown A (2002) Large-eddy simulation of turbulent separated flow over rough hills. Bound Layer Meteorol 102:177–198. doi:10.1023/A:1013155712154

    Article  Google Scholar 

  • Baba-Ahmadi M, Tabor G (2009) Inlet conditions for LES using mapping and feedback control. Comput Fluids 38:1299–1311

    Article  MATH  Google Scholar 

  • Bechmann A (2006) Large-eddy simulation of atmospheric flow over complex terrain. Risø-PhD, Risø-PhD-28(EN)

  • Bechmann A, Sørensen NN (2010) Hybrid RANS/LES method for wind flow over complex terrain. Wind Energy 13:36–50. doi:10.1002/we.346

    Article  Google Scholar 

  • Bechmann A, Sørensen NN, Johansen J, Vinther S, Nielsen B, Botha P (2007) Hybrid RANS/LES method for high Reynolds numbers, applied to atmospheric flow over complex terrain. J Phys Conf Ser 75(1):012054. doi:10.1088/1742-6596/75/1/012054

    Article  Google Scholar 

  • Bechmann A, Sørensen N, Berg J, Mann J, Réthoré PE (2011) The Bolund experiment, part II: blind comparison of microscale flow models. Bound Layer Meteorol 141(2):245–271

    Article  Google Scholar 

  • Berg J, Mann J, Bechmann A, Courtney M, Jørgensen H (2011) The Bolund experiment, part I: flow over a steep, three-dimensional hill. Bound Layer Meteorol 141(2):219–243

    Article  Google Scholar 

  • Blocken B, Stathopoulos T, Carmeliet J (2007) CFD simulation of the atmospheric boundary layer: wall function problems. Atmos Environ 41(2):238–252. doi:10.1016/j.atmosenv.2006.08.019

    Article  Google Scholar 

  • Brown A, Hobson J, Wood N (2001) Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Bound Layer Meteorol 98:411–441. doi:10.1023/A:1018703209408

    Article  Google Scholar 

  • Cao S, Tamura T (2006) Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill. J Wind Eng Ind Aerodyn 94:1–19. doi:10.1016/j.jweia.2005.10.001

    Article  Google Scholar 

  • Cao S, Wang T, Ge Y, Tamura Y (2012) Numerical study on turbulent boundary layers over two-dimensional hills—effects of surface roughness and slope. J Wind Eng Ind Aerodyn 104–106:342–349. doi:10.1016/j.jweia.2012.02.022

    Article  Google Scholar 

  • Castro IP, Apsley DD (1997) Flow and dispersion over topography: a comparison between numerical and laboratory data for two-dimensional flows. Atmos Environ 31:839–850. doi:10.1016/S1352-2310(96)00248-8

  • Chaudhari A (2014) Large-eddy simulation of wind flows over complex terrains for wind energy applications. PhD thesis, Lappeenranta University of Technology

  • Chaudhari A, Hellsten A, Agafonova O, Hamalainen J (2014a) Large eddy simulation of boundary-layer flows over two-dimensional hills. In: Magnus F, Michael G, Nicole M (eds) Progress in industrial mathematics at ECMI 2012. Springer, Heidelberg

    Google Scholar 

  • Chaudhari A, Vuorinen V, Agafonova O, Hellsten A, Hämäläinen J (2014b) Large-eddy simulation for atmospheric boundary layer flows over complex terrains with applications in wind energy. In: 11th World Congress on computational mechanics, WCCM 2014, 5th European conference on computational mechanics, ECCM 2014 and 6th European conference on computational fluid dynamics, ECFD 2014, pp 5205–5216

  • Chow FK, Street RL (2009) Evaluation of turbulence closure models for large-eddy simulation over complex terrain: flow over Askervein hill. J Appl Meteorol Climatol 48(5):1050–1065. doi:10.1175/2008JAMC1862.1

    Article  Google Scholar 

  • Conan B, Chaudhari A, Aubrun S, Beeck J, Hämäläinen J, Hellsten A (2016) Experimental and numerical modelling of flow over complex terrain: the Bolund hill. Bound Layer Meteorol 158(2):183–208. doi:10.1007/s10546-015-0082-0

    Article  Google Scholar 

  • Diebold M, Higgins C, Fang J, Bechmann A, Parlange M (2013) Flow over hills: a large-eddy simulation of the Bolund case. Bound Layer Meteorol 148(1):177–194. doi:10.1007/s10546-013-9807-0

    Article  Google Scholar 

  • El Kasmi A, Masson C (2010) Turbulence modeling of atmospheric boundary layer flow over complex terrain: a comparison of models at wind tunnel and full scale. Wind Energy 13(8):689–704

    Article  Google Scholar 

  • Ercoftac (2013) European research community on flow, turbulence and combustion (ERCOFTAC) database. http://cfd.mace.manchester.ac.uk/ercoftac/. Last accessed date 08.03.2013

  • Finardi S, Brusasca G, Morselli M, Trombetti F, Tampieri F (1993) Boundary-layer flow over analytical two-dimensional hills: a systematic comparison of different models with wind tunnel data. Bound Layer Meteorol 63:259–291. doi:10.1007/BF00710462

    Article  Google Scholar 

  • Gong W, Taylor PA, Dörnbrack A (1996) Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves. J Fluid Mech 312:1–37. doi:10.1017/S0022112096001905

    Article  Google Scholar 

  • Hanna S, Chang J (2012) Acceptance criteria for urban dispersion model evaluation. Meteorol Atmos Phys 116(3–4):133–146. doi:10.1007/s00703-011-0177-1

    Article  Google Scholar 

  • Hattori H, Umehara T, Nagano Y (2013) Comparative study of DNS, LES and Hybrid LES/RANS of turbulent boundary layer with heat transfer over 2d hill. Flow Turbul Combust 90(3):491–510. doi:10.1007/s10494-013-9450-3

    Article  Google Scholar 

  • Henn DS, Sykes RI (1999) Large-eddy simulation of flow over wavy surfaces. J Fluid Mech 383:75–112

    Article  MATH  Google Scholar 

  • Houra T, Nagano Y (2009) Turbulent heat and fluid flow over a two-dimensional hill. Flow Turbul Combust 83(3):389–406. doi:10.1007/s10494-009-9227-x

    Article  MATH  Google Scholar 

  • Khurshudyan LH, Snyder WH, Nekrasov IV (1981) Flow and dispersion of pollutants over two-dimensional hills. United States Environmental Protection Agency Report No EPA-600/4-81-067

  • Krajnović S (2008) Large eddy simulation of the flow over a three-dimensional hill. Flow Turbul Combust 81(1–2):189–204. doi:10.1007/s10494-007-9120-4

    Article  MATH  Google Scholar 

  • Loureiro J, Pinho F, Silva Freire A (2007) Near wall characterization of the flow over a two-dimensional steep smooth hill. Exp Fluids 42(3):441–457. doi:10.1007/s00348-007-0252-z

    Article  Google Scholar 

  • Loureiro JB, Alho AT, Freire APS (2008) The numerical computation of near-wall turbulent flow over a steep hill. J Wind Eng Ind Aerodyn 96:540–561. doi:10.1016/j.jweia.2008.01.011

    Article  Google Scholar 

  • Lund TS, Wu X, Squires KD (1998) Generation of turbulent inflow data for spatially-developing boundary layer simulations. J Comput Phys 140(2):233–258

    Article  MathSciNet  MATH  Google Scholar 

  • Nozawa K, Tamura T (2002) Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer. J Wind Eng Ind Aerodyn 90(10):1151–1162

    Article  Google Scholar 

  • OpenFOAM (2015) OpenFOAM User Guide, the OpenFOAM Foundation Ltd., London. https://openfoam.org

  • Prospathopoulos J, Politis E, Chaviaropoulos P (2012) Application of a 3D RANS solver on the complex hill of Bolund and assessment of the wind flow predictions. J Wind Eng Ind Aerodyn 107–108:149–159

    Article  Google Scholar 

  • Schatzmann M, Olesen HR, Franke J (2010) COST 732 model evaluation case studies: approach and results. University of Hamburg, Hamburg

    Google Scholar 

  • Silva Lopes A, Palma J, Castro F (2007) Simulation of the Askervein flow. Part 2: large-eddy simulations. Bound Layer Meteorol 125(1):85–108

  • Snyder WH, Khurshudyan LH, Nekrasov IV, Lawson RE, Thompson RS (1991) Flow and dispersion of pollutants within two-dimensional valleys. Atmos Environ 25A:1347–1375. doi:10.1016/0960-1686(91)90245-3

    Article  Google Scholar 

  • Spalding DB (1961) A single formula for the law of the wall. J Appl Mech 28(10):455–458

    Article  MATH  Google Scholar 

  • Tamura T, Cao S, Okuno A (2007) LES study of turbulent boundary layer over a smooth and a rough 2D hill model. Flow Turbul Combust 79:405–432. doi:10.1007/s10494-007-9106-2

    Article  MATH  Google Scholar 

  • Taylor P, Teunissen H (1987) The Askervein hill project: overview and background data. Bound Layer Meteorol 39(1–2):15–39. doi:10.1007/BF00121863

    Article  Google Scholar 

  • Trombetti F, Martano P, Tampieri F (1991) Data sets for studies of flow and dispersion in complex terrain: I) The RUSHIL wind tunnel experiment (flow data). CNR Technical Report No 1, FISBAT-RT-91/1

  • Vuorinen V, Larmi M, Schlatter P, Fuchs L, Boersma B (2012) A low-dissipative, scale-selective discretization scheme for the Navier–Stokes equations. Comput Fluids 70:195–205

    Article  MathSciNet  MATH  Google Scholar 

  • Vuorinen V, Keskinen JP, Duwig C, Boersma B (2014) On the implementation of low-dissipative Runge–Kutta projection methods for time dependent flows using OpenFOAM. Comput Fluids 93:153–163. doi:10.1016/j.compfluid.2014.01.026

    Article  MathSciNet  Google Scholar 

  • Vuorinen V, Chaudhari A, Keskinen JP (2015) Large-eddy simulation in a complex hill terrain enabled by a compact fractional step openfoam solver. Adv Eng Softw 79:70–80. doi:10.1016/j.advengsoft.2014.09.008

    Article  Google Scholar 

  • Yeow T, Cuerva-Tejero A, Perez-Alvarez J (2015) Reproducing the Bolund experiment in wind tunnel. Wind Energy 18(1):153–169. doi:10.1002/we.1688

    Google Scholar 

  • Ying R, Canuto V (1997) Numerical simulation of flow over two-dimensional hills using a second-order turbulence closure model. Bound Layer Meteorol 85:447–474. doi:10.1023/A:1000534921008

    Article  Google Scholar 

  • Yoshizawa A (1993) Bridging between eddy-viscosity-type and second-order models using a two-scale DIA. In: 9th International symposium on turbulent shear flow, Kyoto, Japan, vol 3, pp 23.1.1–23.1.6

Download references

Acknowledgements

During this work, the high-performance computing resources were provided by CSC-IT Center for Science Ltd, in Espoo, Finland. The work presented here was carried out in the RENEWTECH project with objectives to develop wind power technology and business in Southern Finland, and it was funded by the European Regional Development Fund (ERDF). The European Research Council is also acknowledged for providing funding for the project “Atmospheric planetary boundary layers: Physics, modeling and role in the earth system” (PBL-PMES) (Grant Agreement Number 227915).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashvinkumar Chaudhari.

Additional information

Communicated by Paul Cizmas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, A., Vuorinen, V., Hämäläinen, J. et al. Large-eddy simulations for hill terrains: validation with wind-tunnel and field measurements. Comp. Appl. Math. 37, 2017–2038 (2018). https://doi.org/10.1007/s40314-017-0435-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0435-z

Keywords

Mathematics Subject Classification

Navigation