Skip to main content
Log in

Evaluation of cholesterol metabolism in cerebrotendinous xanthomatosis

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Background

Cerebrotendinous xanthomatosis (CTX) is a treatable bile acid disorder caused by mutations of CYP27A1. The pathogenesis of neurological damage has not been completely explained. Oral chenodeoxycholic acid (CDCA) can lead to clinical stabilization, but in a subgroup of patients the disease progresses despite treatment. In the present study, we aimed at clarifying cholesterol metabolism abnormalities and their response to CDCA treatment, in order to identify reliable diagnostic and prognostic markers and understand if differences exist between stable patients and those with neurological progression.

Methods

We enrolled 19 untreated CTX patients and assessed serum profile of bile acids intermediates, oxysterols, cholesterol, lathosterol, and plant sterols. Then we performed a long-term follow up during CDCA therapy, and compared biochemical data with neurological outcome.

Results

We observed increase of cholestanol, 7α-hydroxy-4-cholesten-3-one (7αC4), lathosterol, and plant sterols, whereas 27-hydroxycholesterol (27-OHC) was extremely low or absent. CDCA treatment at a daily dose of 750 mg normalized all biochemical parameters except for 7αC4 which persisted slightly higher than normal in most patients, and 27-OHC which was not modified by therapy. Biochemical evaluation did not reveal significant differences between stable and worsening patients.

Discussion

Cholestanol and 7αC4 represent important markers for CTX diagnosis and monitoring of therapy. Treatment with CDCA should aim at normalizing serum 7αC4 as well as cholestanol, since 7αC4 better mirrors 7α-hydroxylation rate and is thought to be correlated with cholestanol accumulation in the brain. Assessment of serum 27-OHC is a very good tool for biochemical diagnosis at any stage of disease. Lathosterol and plant sterols should be considered as additional markers for diagnosis and monitoring of therapy. Further studies including long-term assessment of bile acid intermediates in cerebrospinal fluid are needed in patients who show clinical progression despite treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alessandrini L, Ciuffreda P, Santaniello E, Terraneo G (2004) Clemmensen reduction of diosgenin and kryptogenin: synthesis of [16,16,22,22,23,23-(2)H(6)]-(25R)-26-hydroxycholesterol. Steroids 69:789–794

    Article  PubMed  CAS  Google Scholar 

  • Ali Z, Heverin M, Olin M et al (2013) On the regulatory role of side-chain hydroxylated oxysterols in the brain. Lessons from CYP27A1 transgenic and Cyp27a1(-/-) mice. J Lipid Res 54:1033–1043

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barkhof F, Verrips A, Wesseling P et al (2000) Cerebrotendinous xanthomatosis: the spectrum of imaging findings and the correlation with neuropathologic findings. Radiology 217:869–876

    Article  PubMed  CAS  Google Scholar 

  • Båvner A, Shafaati M, Hansson M et al (2010) On the mechanism of accumulation of cholestanol in the brain of mice with a disruption of sterol 27-hydroxylase. J Lipid Res 51:2722–2730

    Article  PubMed  PubMed Central  Google Scholar 

  • Berginer VM, Berginer J, Korczyn AD, Tadmor R (1994) Magnetic resonance imaging in cerebrotendinous xanthomatosis: a prospective clinical and neuroradiological study. J Neurol Sci 122:102–108

    Article  PubMed  CAS  Google Scholar 

  • Berginer VM, Gross B, Morad K et al (2009) Chronic diarrhea and juvenile cataracts: think cerebrotendinous xanthomatosis and treat. Pediatrics 123:143–147

    Article  PubMed  Google Scholar 

  • Berginer VM, Salen G, Shefer S (1984) Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med 311:1649–1652

    Article  PubMed  CAS  Google Scholar 

  • Bertolotti M, Del Puppo M, Gabbi C et al (2008) Correlation between plasma levels of 7alpha-hydroxy-4-cholesten-3-one and cholesterol 7alpha-hydroxylation rates in vivo in hyperlipidemic patients. Steroids 73:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Björkhem I (2013) Cerebrotendinous xanthomatosis. Curr Opin Lipidol 24:283–287

    Article  PubMed  Google Scholar 

  • Björkhem I, Diczfalusy U, Lövgren-Sandblom A et al (2014) On the formation of 7-ketocholesterol from 7-dehydrocholesterol in patients with CTX and SLO. J Lipid Res 55:1165–1172

    Article  PubMed  PubMed Central  Google Scholar 

  • Björkhem I, Hansson M (2010) Cerebrotendinous xanthomatosis: an inborn error in bile acid synthesis with defined mutations but still a challenge. Biochem Biophys Res Commun 396:46–49

    Article  PubMed  Google Scholar 

  • Cali JJ, Hsieh CL, Francke U et al (1991) Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem 266:7779–7783

    PubMed  CAS  PubMed Central  Google Scholar 

  • Camilleri M, Nadeau A, Tremaine WJ et al (2009) Measurement of serum 7alpha-hydroxy-4-cholesten-3-one (or 7alphaC4), a surrogate test for bile acid malabsorption in health, ileal disease and irritable bowel syndrome using liquid chromatography-tandem mass spectrometry. Neurogastroenterol Motil 21:734–e743

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen W, Chen G, Head DL, Mangelsdorf DJ, Russell DW (2007) Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab 5:73–79

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • DeBarber AE, Connor WE, Pappu AS, Merkens LS, Steiner RD (2010) ESI-MS/MS quantification of 7alpha-hydroxy-4-cholesten-3-one facilitates rapid, convenient diagnostic testing for cerebrotendinous xanthomatosis. Clin Chim Acta 411:43–48

    Article  PubMed  CAS  Google Scholar 

  • de Sain-van der Velden MG, Verrips A, Prinsen BH, de Barse M, Berger R, Visser G (2008) Elevated cholesterol precursors other than cholestanol can also be a hallmark for CTX. J Inherit Metab Dis 31:S387–S393

    Article  PubMed  Google Scholar 

  • De Stefano N, Dotti MT, Mortilla M, Federico A (2001) Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis. Brain 124:121–131

    Article  PubMed  Google Scholar 

  • Del Puppo M, Kienle MG, Petroni ML, Crosignani A, Podda M (1998) Serum 27-hydroxycholesterol in patients with primary biliary cirrhosis suggests alteration of cholesterol catabolism to bile acids via the acidic pathway. J Lipid Res 39:2477–2482

    PubMed  Google Scholar 

  • Dzeletovic S, Breuer O, Lund E, Diczfalusy U (1995) Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem 225:73–80

    Article  PubMed  CAS  Google Scholar 

  • Ellis E, Axelson M, Abrahamsson A et al (2003) Feedback regulation of bile acid synthesis in primary human hepatocytes: evidence that CDCA is the strongest inhibitor. Hepatology 38:930–938

    Article  PubMed  CAS  Google Scholar 

  • Fakheri RJ, Javitt NB (2012) 27-Hydroxycholesterol, does it exist? On the nomenclature and stereochemistry of 26-hydroxylated sterols. Steroids 77:575–577

    Article  PubMed  CAS  Google Scholar 

  • Galli Kienle M, Anastasia M, Cighetti G, Galli G, Fiecchi A (1980) Studies on the 14 alpha-demethylation mechanism in cholesterol biosynthesis. Eur J Biochem 110:93–105

    Article  PubMed  CAS  Google Scholar 

  • Ginanneschi F, Mignarri A, Mondelli M et al (2013) Polyneuropathy in cerebrotendinous xanthomatosis and response to treatment with chenodeoxycholic acid. J Neurol 260:268–274

    Article  PubMed  CAS  Google Scholar 

  • Heverin M, Meaney S, Lütjohann D, Diczfalusy U, Wahren J, Björkhem I (2005) Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain. J Lipid Res 46:1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kubota S, Seyama Y (1999) Cholestanol induces apoptosis of cerebellar neuronal cells. Biochem Biophys Res Commun 256:198–203

    Article  PubMed  CAS  Google Scholar 

  • Kempen HJ, Glatz JF, Gevers Leuven JA, van der Voort HA, Katan MB (1988) Serum lathosterol concentration is an indicator of whole-body cholesterol synthesis in humans. J Lipid Res 29:1149–1155

    PubMed  CAS  Google Scholar 

  • Kuriyama M, Fujiyama J, Kasama T, Osame M (1991) High levels of plant sterols and cholesterol precursors in cerebrotendinous xanthomatosis. J Lipid Res 32:223–229

    PubMed  CAS  Google Scholar 

  • Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    Article  PubMed  CAS  Google Scholar 

  • Leoni V, Caccia C (2011) Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids 164:515–524

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Lu H, Lu YF et al (2014) Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures. Toxicol Sci 141:538–546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martini G, Mignarri A, Ruvio M et al (2013) Long-term bone density evaluation in cerebrotendinous xanthomatosis: evidence of improvement after chenodeoxycholic acid treatment. Calcif Tissue Int 92:282–286

    Article  PubMed  CAS  Google Scholar 

  • Mignarri A, Dotti MT, Del Puppo M et al (2012) Cerebrotendinous xanthomatosis with progressive cerebellar vacuolation: six-year MRI follow-up. Neuroradiology 54:649–651

    Article  PubMed  Google Scholar 

  • Mignarri A, Gallus GN, Dotti MT, Federico A (2014) A suspicion index for early diagnosis and treatment of cerebrotendinous xanthomatosis. J Inherit Metab Dis 37:421–429

    Article  PubMed  CAS  Google Scholar 

  • Mignarri A, Rossi S, Ballerini M et al (2011) Clinical relevance and neurophysiological correlates of spasticity in cerebrotendinous xanthomatosis. J Neurol 258:783–790

    Article  PubMed  CAS  Google Scholar 

  • Panzenboeck U, Andersson U, Hansson M, Sattler W, Meaney S, Björkhem I (2007) On the mechanism of cerebral accumulation of cholestanol in patients with cerebrotendinous xanthomatosis. J Lipid Res 48:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Pilo de la Fuente B, Jimenez-Escrig A, Lorenzo JR et al (2011a) Cerebrotendinous xanthomatosis in Spain: clinical, prognostic, and genetic survey. Eur J Neurol 18:1203–1211

    Article  PubMed  CAS  Google Scholar 

  • Pilo de la Fuente B, Sobrido MJ, Girós M et al (2011b) Usefulness of cholestanol levels in the diagnosis and follow-up of patients with cerebrotendinous xanthomatosis. Neurologia 26:397–404

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Agusti I, Kojovic M, Edwards MJ et al (2012) Atypical parkinsonism and cerebrotendinous xanthomatosis: report of a family with corticobasal syndrome and a literature review. Mov Disord 27:1769–1774

    Article  PubMed  Google Scholar 

  • Salen G, Kwiterovich PO Jr, Shefer S et al (1985) Increased plasma cholestanol and 5 alpha-saturated plant sterol derivatives in subjects with sitosterolemia and xanthomatosis. J Lipid Res 26:203–209

    PubMed  CAS  Google Scholar 

  • Van Heijst AF, Verrips A, Wevers RA, Cruysberg JR, Renier WO, Tolboom JJ (1998) Treatment and follow-up of children with cerebrotendinous xanthomatosis. Eur J Pediatr 157:313–316

    Article  PubMed  Google Scholar 

  • van Swieten JC, Koudstaal PJ, Visser MC et al (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19:604–607

    Article  PubMed  Google Scholar 

  • Wolthers BG, Walrecht HT, van der Molen JC, Nagel GT, Van Doormaal JJ, Wijnandts PN (1991) Use of determinations of 7-lathosterol (5 alpha-cholest-7-en-3 beta-ol) and other cholesterol precursors in serum in the study and treatment of disturbances of sterol metabolism, particularly cerebrotendinous xanthomatosis. J Lipid Res 32:603–612

    PubMed  CAS  Google Scholar 

  • Yahalom G, Tsabari R, Molshatzki N, Ephraty L, Cohen H, Hassin-Baer S (2013) Neurological outcome in cerebrotendinous xanthomatosis treated with chenodeoxycholic acid: early versus late diagnosis. Clin Neuropharmacol 36:78–83

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethic Guidelines

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

Conflict of interest

None.

Funding

Andrea Mignarri, Alessandro Magni, Marina Del Puppo, Gian Nicola Gallus, Ingemar Björkhem, Antonio Federico, and Maria Teresa Dotti declare no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mignarri.

Additional information

Communicated by: Jutta Gaertner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mignarri, A., Magni, A., Del Puppo, M. et al. Evaluation of cholesterol metabolism in cerebrotendinous xanthomatosis. J Inherit Metab Dis 39, 75–83 (2016). https://doi.org/10.1007/s10545-015-9873-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-015-9873-1

Keywords

Navigation