Skip to main content
Log in

Compensatory force measurement and multimodal force feedback for remote-controlled vascular interventional robot

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Minimally invasive vascular interventional surgery is widely used and remote-controlled vascular interventional surgery robots (RVIRs) are being developed to reduce the occupational risk of the intervening physician in minimally invasive vascular interventional surgeries. Skilled surgeon performs surgeries mainly depending on the detection of collisions. Inaccurate force feedback will be difficult for surgeons to perform surgeries or even results in medical accidents. In addition, the surgeon cannot quickly and easily distinguish whether the proximal force exceeds the safety threshold of blood vessels or not, and thus it results in damage to the blood vessels. In this paper, we present a novel method comprising compensatory force measurement and multimodal force feedback (MFF). Calibration experiments and performance evaluation experiments were carried out. Experimental results demonstrated that the proposed method can measure the proximal force of catheter/guidewire accurately and assist surgeons to distinguish the change of proximal force more easily. This novel method is suitable for use in actual surgical operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • F. Arai, R. Fujimura, T. Fukuda, M. Negoro, New catheter driving method using linear stepping mechanism for intravascular neurosurgery. IEEE International Conference on Robotics and Automation. 2944–2949 (2002)

  • X. Bao, S. Guo, N. Xiao, Y. Wang, M. Qin, Y. Zhao, C. Xu, W. Pen, Design and Evaluation of a Novel Guidewire Navigation Robot. IEEE International Conference on Mechatronics and Automation. 431–436 (2016)

  • X. Bao, S. Guo, N. Xiao, Y. Zhao, C. Zhang, C. Yang, R. Shen, Toward cooperation of catheter and guidewire for remote-controlled vascular interventional robot, IEEE International Conference on Mechatronics and Automation, 422–426 (2017)

  • X. Bao, S. Guo, N. Xiao, Y. Li, C. Yang, Y. Jiang, A cooperation of catheters and guidewires-based novel remote-controlled vascular interventional robot. Biomedical Microdevices. (2018a). https://doi.org/10.1007/s10544-018-0261-0

  • X. Bao, S. Guo, N. Xiao, Y. Li, C. Yang, R. Shen, J. Cui, Y. Jiang, X. Liu, K. Liu, Operation evaluation in-human of a novel Remote-controlled vascular interventional robot. Biomedical Microdevices. (2018b). https://doi.org/10.1007/s10544-018-0277-5

  • R. Beyar, L. Gruberg, D. Deleanu, A. Roguin, Y. Almagor, S. Cohen, G. Kumar, T. Wenderow, Remote-control percutaneous coronary interventions: Concept, validation, and first-in-humans pilot clinical trial. J. Am. Coll. Cardiol. 47(2), 296–300 (2006)

    Article  Google Scholar 

  • G. Bian, X. Xie, Z. Feng, Z. Hou, P. Wei, L. Cheng, M. Tan, An enhanced dual-finger robotic Hand for Catheter manipulating in vascular intervention: A preliminary study. IEEE Int Conf Inform Autom, 356–361 (2014)

  • J.P. Carrozza Jr., Robotic-assisted percutaneous coronary intervention filling an unmet need. J. Cardiovasc. Transl. Res. 5(1), 62–66 (2012)

    Article  Google Scholar 

  • L. Cercenelli, E. Marcelli, G. Plicchi, Initial experience with a telerobotic system to remotely navigate and automatically reposition standard steerable EP catheters. ASAIO J. 53(5), 523–529 (2007)

    Article  Google Scholar 

  • M. Faddis, W. Blume, J. Finney, A. Hall, J. Rauch, J. Sell, K. Bae, M. Talcott, B. Lindsay, Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation 106(23), 2980–2985 (2002)

    Article  Google Scholar 

  • Z. Feng, G. Bian, X. Xie, Z. Hou, J. Hao, Design and evaluation of a bio-inspired robotic hand for percutaneous coronary intervention. IEEE International Conference on Robotics and Automation. 5338–5343 (2015)

  • Y. Fu, H. Liu, S. Wang, W. Deng, X. Li, Z. Liang, Skeleton-based active catheter navigation. Int J Med Rob Comput Assisted Surg. 5(2), 125–135 (2009)

    Article  Google Scholar 

  • Y. Fu, A. Gao, H. Liu, K. Li, Z. Liang, Development of a novel robotic catheter system for endovascular minimally invasive surgery. IEEE/ICME International Conference on Complex Medical Engineering, 400–405 (2011)

  • J. Guo, S. Guo, Design and characteristics evaluation of a novel VR-based robot-assisted catheterization training system with force feedback for vascular interventional surgery. Microsyst. Technol 23(8), 1–10 (2016)

    Google Scholar 

  • S. Guo, T. Fukuda, K. Kosuge, F. Arai, K. Oguro, M. Negoro, Micro catheter system with active guide wire. IEEE International Conference on Robotics and Automation. 79–84 (1995)

  • S. Guo, H. Yamaji, Y. Kita, K. Izuishi, T. Tamiya, A novel active catheter system for ileus treatment. IEEE International Conference on Automation & Logistics, 67–72 (2008)

  • J. Guo, S. Guo, Y. Yu, Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery. Biomed. Microdevices 18(5), 76–92 (2016)

    Article  Google Scholar 

  • J. Guo, X. Jin, S. Guo, Study on the operational safety of the vascular interventional surgical robotic system. Micromachines 9(3), 1272–1288 (2018a)

    Google Scholar 

  • S. Guo, Y. Wang, N. Xiao, Y. Li, Y. Jiang, Study on real-time force feedback for a master–slave interventional surgical robotic system. Biomed. Microdevices (2018b). https://doi.org/10.1007/s10544-018-0278-4

  • J. Jayender, R. Patel, A. S. Nikumb, Robot-assisted catheter insertion using hybrid impedance control. IEEE International Conference on Robotics and Automation. 607–612 (2006)

  • J. Jayender, M. Azizian, R. Patel, Autonomous image-guided robot-assisted active catheter insertion. IEEE Trans. Robot. 24(4), 858–871 (2008)

    Article  Google Scholar 

  • L. Jones, in Human and Machine Haptics. By M. Cutkosky, R. Howe, K. Salisbury, and M. Srinivasan, Eds., Cambridge, MIT Press. (2000)

  • E. Khan, W. Frumkin, G. Ng, S. Neelagaru, F. Abi-Samra, J. Lee, M. Giudici, D. Gohn, R. Winkle, J. Sussman, B. Knight, A. Berman, H. Calkins, First experience with a novel robotic remote catheter system: AmigoTM mapping trial. J. Interv. Card. Electrophysiol. 37(2), 121–129 (2013)

    Article  Google Scholar 

  • L. Klein, D. Miller, S. Balter, W. Laskey, D. Haines, A. Norbash, M. Mauro, J. Goldstein, Occupational health hazards in the interventional laboratory: Time for a safer environment. Catheter. Cardiovasc. Interv. 73(3), 432–438 (2009)

    Article  Google Scholar 

  • X. Lu, M. Khonsari, E. Gelinck, The Stribeck curve: Experimental results and theoretical prediction. J. Tribol. 128, 789–794 (2006)

    Article  Google Scholar 

  • E. Marcelli, L. Cercenelli, G. Plicchi, A novel telerobotic system to remotely navigate standard electrophysiology catheters. Comput. Cardiol. 35, 137–140 (2008)

    Google Scholar 

  • J. Park, J. Choi, H. Pak, S. Song, J. Lee, Y. Park, S. Shin, K. Sun, Development of a force-reflecting robotic platform for cardiac catheter navigation. Artif. Organs 34(11), 1034–1039 (2010)

    Article  Google Scholar 

  • C. Riga, C. Bicknell, A. Rolls, N. Cheshire, M. Hamady, Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the Magellan system. J. Vasc. Interv. Radiol. 24(2), 191–196 (2013)

    Article  Google Scholar 

  • G. Srimathveeravalli, T. Kesavadas, X. Li, Design and fabrication of a robotic mechanism for remote steering and positioning of interventional devices. International Journal of Medical Robotics & Computer Assisted Surgery. 6(2), 160–170 (2010)

    Google Scholar 

  • R. Stribeck, Kugellager Für Beliebige Belastungen. Zeitschrift des Vereines Deutscher Ingenieure 46, 1463–1470 (1902)

    Google Scholar 

  • M. Tanimoto, F. Arai, T. Fukuda, K. Itoigawa, M. Hashimoto, I. Takahashi, M. Negoro, Telesurgery System for Intravascular Neurosurgery. International Conference on Medical Image Computing and Computer-Assisted Intervention. 29–39 (2000)

  • M. Tavallaei, D. Gelman, M. Lavdas, A. Skanes, D. Jones, J. Bax, M. Drangova, Design, development and evaluation of a compact telerobotic catheter navigation system. International Journal of Medical Robotics & Computer Assisted Surgery 12(3), 442–452 (2016)

    Article  Google Scholar 

  • R. Taylor, D. Stoiariovici, Medical robotics in computer-integrated surgery. IEEE Trans Rob Autom 19(5), 765–781 (2003)

    Article  Google Scholar 

  • C. Tercero, S. Ikeda, T. Uchiyama, T. Fukuda, F. Arai, Y. Okada, Y. Ono, R. Hattori, T. Yamamoto, M. Negoro, I. Takahashi, Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery. International Journal of Medical Robotics & Computer Assisted Surgery. 3(1), 52–58 (2010)

    Article  Google Scholar 

  • Y. Thakur, D.W. Holdsworth, M. Drangova, Characterization of catheter dynamics during percutaneous transluminal catheter procedures. IEEE Trans Biomed Eng. 56(8), 2140–2143 (2009)

    Article  Google Scholar 

  • M. Whitby, C. Martin, A study of the distribution of dose across the hands of interventional radiologists and cardiologists. Br. J. Radiol. 78(927), 219–229 (2005)

    Article  Google Scholar 

  • N. Xiao, S. Guo, J. Guo, X. Xiao, Development of a kind of robotic catheter manipulation system. IEEE International Conference on Robotics and Biomimetics. 32–37 (2008)

  • X. Yin, S. Guo, N. Xiao, T. Tamiya, Safety operation consciousness realization of a MR fluids-based novel haptic Interface for Teleoperated catheter minimally invasive neuro surgery. IEEE/ASME Transactions on Mechatronics. 21(2), 1043–1054 (2016)

    Article  Google Scholar 

  • N. Zakaria, T. Komeda, C. Low, K. Mahadhir, Development of foolproof catheter guide system based on mechatronic design. Prod. Eng. 7(1), 81–90 (2013)

    Article  Google Scholar 

  • L. Zhang, S. Guo, H. Yu, Y. Song, T. Tamiya, H. Hirata, H. Ishihara, Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system. Biomed. Microdevices (2018). https://doi.org/10.1007/s10544-018-0266-8

  • Y. Zhao, S. Guo, N. Xiao, Y. Wang, Y. Li, Y. Jiang, Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery. Biomed. Microdevices (2018). https://doi.org/10.1007/s10544-018-0275-7

Download references

Acknowledgements

This research is supported by National High-tech Research and Development Program (863 Program) of China (2015AA043202), and National Key Research and Development Program of China (2017YFB1304401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuxiang Guo, Nan Xiao or Liwei Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Guo, S., Xiao, N. et al. Compensatory force measurement and multimodal force feedback for remote-controlled vascular interventional robot. Biomed Microdevices 20, 74 (2018). https://doi.org/10.1007/s10544-018-0318-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0318-0

Keywords

Navigation