Skip to main content
Log in

Energy dissipative numerical schemes for gradient flows of planar curves

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop an energy dissipative numerical scheme for gradient flows of planar curves, such as the curvature flow and the elastic flow. Our study presents a general framework for solving such equations. To discretize the time variable, we use a similar approach to the discrete partial derivative method, which is a structure-preserving method for gradient flows of graphs. For the approximation of curves, we use B-spline curves. Owing to the smoothness of B-spline functions, we can directly address higher order derivatives. Moreover, since B-spline curves require few degrees of freedom, we can reduce the computational cost. In the last part of the paper, we present some numerical examples of the elastic flow, which exhibit topology-changing solutions and more complicated evolution. Videos illustrating our method are available on YouTube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. URL: https://www.youtube.com/playlist?list=PLMF3dSqWEii69loXvCtgDCI4PYijq_4L3.

  2. URL: https://www.youtube.com/playlist?list=PLMF3dSqWEii69loXvCtgDCI4PYijq_4L3.

References

  1. Aimoto, Y., Matsuo, T., Miyatake, Y.: A local discontinuous Galerkin method based on variational structure. Discrete Contin. Dyn. Syst. Ser. S 8(5), 817–832 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1), 441–462 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of gradient flows for closed curves in \({\mathbb{R}}^{d}\). IMA J. Numer. Anal. 30(1), 4–60 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid-Structure Interaction: Methods and Applications. Wiley, Hoboken (2013)

    Book  MATH  Google Scholar 

  5. Bellettini, G., Mantegazza, C., Novaga, M.: Singular perturbations of mean curvature flow. J. Differ. Geom. 75(3), 403–431 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Corttrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)

    Book  Google Scholar 

  7. Deckelnick, K., Dziuk, G.: Error analysis for the elastic flow of parametrized curves. Math. Comput. 78(266), 645–671 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dziuk, G., Kuwert, E., Schätzle, R.: Evolution of elastic curves in \({\mathbb{R}}^{n}\): existence and computation. SIAM J. Math. Anal. 33(5), 1228–1245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Farin, G.E.: NURBS. From Projective Geometry to Practical Use, 2nd edn. A K Peters Ltd., Natick (1999)

    MATH  Google Scholar 

  11. Furihata, D.: Finite difference schemes for \(\partial u/\partial t=(\partial /\partial x)^\alpha \delta G/\delta u\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156(1), 181–205 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method. A Structure-preserving Numerical Method for Partial Differential Equations. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover Publications, New York (1944)

    MATH  Google Scholar 

  15. Matsuo, T.: Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations. J. Comput. Appl. Math. 218(2), 506–521 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  17. Sachkov, Y.L.: Closed Euler elasticae. Trans. Math. Inst. Steklova 278, 227–241 (2012). (Differentsialnye Uravneniya i Dinamicheskie Sistemy)

    MATH  MathSciNet  Google Scholar 

  18. Schumaker, L.L.: Spline Functions: Basic Theory. 3rd edn. Cambridge University Press, Cambridge (2007)

  19. Singer, D.A.: Lectures on elastic curves and rods. In: Curvature and Variational Modeling in Physics and Biophysics, volume 1002 of AIP Conference Proceedings, pp. 3–32. American Institute of Physics, Melville (2008)

Download references

Acknowledgements

The author would like to thank Prof. Yoshihiro Tonegawa and Dr. Takahito Kashiwabara for bringing this topic to my attention and encouraging me through valuable discussions. Also, the author would like to thank the anonymous reviewer for valuable comments and suggestions to improve the quality of the paper. This work was supported by the Program for Leading Graduate Schools, MEXT, Japan, and by JSPS KAKENHI Grant Number 15J07471, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Kemmochi.

Additional information

Communicated by Jan Nordström.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemmochi, T. Energy dissipative numerical schemes for gradient flows of planar curves. Bit Numer Math 57, 991–1017 (2017). https://doi.org/10.1007/s10543-017-0685-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-017-0685-6

Keywords

Mathematics Subject Classification

Navigation