Skip to main content
Log in

Quasi-interpolation based on the ZP-element for the numerical solution of integral equations on surfaces in \(\mathbb {R}^3\)

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 24 July 2017

This article has been updated

Abstract

The aim of this paper is to present spline methods for the numerical solution of integral equations on surfaces of \(\mathbb {R}^3\), by using optimal superconvergent quasi-interpolants defined on type-2 triangulations and based on the Zwart–Powell quadratic box spline. In particular we propose a modified version of the classical collocation method and two spline collocation methods with high order of convergence. We also deal with the problem of approximating the surface. Finally, we study the approximation error of the above methods together with their iterated versions and we provide some numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 24 July 2017

    An erratum to this article has been published.

References

  1. Allouch, C., Sablonnière, P., Sbibih, D.: A collocation method for the numerical solution of a two dimensional integral equation using a quadratic spline quasi-interpolant. Numer. Algorithms 62, 445–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allouch, C., Sablonnière, P., Sbibih, D.: A modified Kulkarni’s method based on a discrete spline quasi-interpolant. Math. Comput. Simul. 81, 1991–2000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  4. Barrera, D., Ibáñez, M.J., Sablonnière, P., Sbibih, D.: On near-best discrete quasi-interpolation on a four-directional mesh. J. Comput. Appl. Math. 233, 1470–1477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrera, D., Ibáñez, M.J.: Bernstein–Bézier representation and near-minimally normed discrete quasi-interpolation operators. Appl. Numer. Math. 58, 59–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Springer, New York (1993)

    Book  MATH  Google Scholar 

  7. Chien, D.: Piecewise polynomial collocation for integral equations with a smooth kernel on surfaces in three dimensions. J. Integral Equ. Appl. 5, 315–344 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dagnino, C., Lamberti, P.: Numerical integration of 2-D integrals based on local bivariate \(C^1\) quasi-interpolating splines. Adv. Comput. Math. 8, 19–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dagnino, C., Lamberti, P.: On the approximation power of bivariate quadratic \(C^1\) splines. J. Comput. Appl. Math. 131, 321–332 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dagnino, C., Lamberti, P.: On the construction of local quadratic spline quasi-interpolants on bounded rectangular domains. J. Comput. Appl. Math. 221, 367–375 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dagnino, C., Lamberti, P., Remogna, S.: B-spline bases for unequally smooth quadratic spline spaces on non-uniform criss-cross triangulations. Numer. Algorithms 61, 209–222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dagnino, C., Lamberti, P., Remogna, S.: Curve network interpolation by \(C^1\) quadratic B-spline surfaces. Comp. Aided Geom. Des. 40, 26–39 (2015)

    Article  MathSciNet  Google Scholar 

  13. Dagnino, C., Remogna, S., Sablonnière, P.: Error bounds on the approximation of functions and partial derivatives by quadratic spline quasi-interpolants on non-uniform criss-cross triangulations of a rectangular domain. BIT Numer. Math. 53, 87–109 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lamberti, P.: Numerical integration based on bivariate quadratic spline quasi-interpolants on bounded domains. BIT Numer. Math. 49, 565–588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lyness, J.N., Cools, R.: A Survey of Numerical Cubature over Triangles. Mathematics and Computer Science Division, Argonne National Laboratory, III (1994)

  16. Remogna, S.: Constructing good coefficient functionals for bivariate \(C^1\) quadratic spline quasi-interpolants. In: Daehlen, M., et al. (eds.) Mathematical Methods for Curves and Surfaces. Lecture Notes in Computational Science, vol. 5862, pp. 329–346. Springer, Berlin (2010)

    Chapter  Google Scholar 

  17. Remogna, S., Sablonnière, P.: On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains. Comp. Aided Geometr. Des. 28, 89–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sablonnière, P.: Quadratic spline quasi-interpolants on bounded domains of \(\mathbb{R}^d, d = 1,2,3\). Rend. Sem. Mat. Univ. Pol. Torino 61, 229–238 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Wang, R.H.: Multivariate Spline Functions and Their Application. Science Press, Beijing (2001)

    Book  Google Scholar 

  20. Wang, R.H., Li, C.J.: A kind of multivariate NURBS surfaces. J. Comp. Math. 22, 137–144 (2004)

    MathSciNet  MATH  Google Scholar 

  21. von Winckel, G.: Matlab procedure \(\mathtt{{triquad}}\). http://www.mathworks.com/matlabcentral/fileexchange/9230-gaussian-quadrature-for-triangles

Download references

Acknowledgments

This work was supported by the program “Progetti di Ricerca 2016” of the Gruppo Nazionale per il Calcolo Scientifico (GNCS)—INdAM. Moreover, the authors thank the University of Torino for its support to their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Remogna.

Additional information

Communicated by Tom Lyche.

An erratum to this article is available at https://doi.org/10.1007/s10543-017-0677-6.

Appendix A

Appendix A

Here we report the expression of the fundamental functions associated with \(Q_{mn}\) defined in (2.1), for \(m,n \ge 8\). They are obtained from the coefficient functionals given in [16]. For the pairs (ij) with \(i=4,\ldots ,m-3\) and \(j=4,\ldots ,n-3\)

$$\begin{aligned} L_{i,j}=\frac{3}{2}B_{i,j}-\frac{1}{8}(B_{i,j-1}+B_{i,j+1}+B_{i-1,j}+B_{i+1,j}). \end{aligned}$$

The other \(L_{i,j}\)’s have particular definitions. In the neighbourhood of the point (ac) we have

$$\begin{aligned} \begin{array}{ll} L_{0,0}=&{}\frac{1403}{504}B_{0,0}-\frac{4}{15}B_{1,1}, \\ &{}\\ L_{1,0}=&{}\frac{131}{60}B_{1,0}-\frac{173}{300}B_{0,1}-\frac{1}{12}B_{2,1},\\ &{}\\ L_{2,0}=&{}-\frac{397}{1440}B_{0,0}-\frac{2}{15}B_{1,1}+\frac{12}{5}B_{2,0}-\frac{1}{12}B_{3,1}-\frac{7}{30}B_{2,1}+\frac{9}{40}B_{1,0}, \\ &{}\\ L_{3,0}=&{}-\frac{1}{12}B_{4,1}+\frac{3}{20}B_{0,1}+\frac{12}{5}B_{3,0}-\frac{1}{12}B_{2,1}-\frac{7}{30}B_{3,1}, \\ &{}\\ L_{4,0}=&{}\frac{11}{224}B_{0,0}+\frac{12}{5}B_{4,0}-\frac{1}{120}B_{1,0}-\frac{7}{30}B_{4,1}-\frac{1}{12}B_{3,1}-\frac{1}{12}B_{5,1}, \\ &{}\\ \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{ll} L_{1,1}=&{}-\frac{63}{32}B_{0,0}-\frac{13}{40}(B_{1,0}+B_{0,1})+\frac{33}{20}B_{1,1}-\frac{1}{4}(B_{2,0}+B_{0,2}), \\ &{}\\ L_{2,1}=&{}-\frac{47}{60}B_{1,0}-\frac{9}{8}B_{2,0}-\frac{1}{4}B_{3,0}-\frac{1}{20}B_{1,1}+\frac{13}{8}B_{2,1}+\frac{1}{8}B_{0,2}-\frac{1}{24}B_{1,2}-\frac{1}{8}B_{2,2}, \\ &{}\\ L_{3,1}=&{}\frac{3}{50}B_{1,0}-\frac{1}{4}B_{2,0}-\frac{9}{8}B_{3,0}-\frac{1}{4}B_{4,0}-\frac{7}{40}B_{0,1}+\frac{1}{40}B_{1,1}+\frac{13}{8}B_{3,1}-\frac{1}{8}B_{3,2}, \\ &{}\\ L_{2,2}=&{}\frac{317}{288}B_{0,0}+\frac{1}{4}(B_{0,1}+B_{1,0})+\frac{1}{8}(B_{3,0}+B_{0,3})-\frac{1}{15}B_{1,1}-\frac{1}{6}(B_{1,2}+B_{2,1})\\ &{}-\frac{1}{24}(B_{1,3}+B_{3,1})-\frac{1}{8}(B_{2,3}+B_{3,2})+\frac{3}{2}B_{2,2},\\ &{}\\ L_{3,2}=&{}-\frac{37}{160}B_{0,0}+\frac{1}{8}B_{2,0}+\frac{1}{8}B_{4,0}-\frac{1}{24}B_{2,1}-\frac{1}{24}B_{4,1}-\frac{1}{6}B_{3,1}-\frac{1}{40}B_{0,2}\\ &{}+\frac{1}{40}B_{1,2}-\frac{1}{8}B_{2,2}-\frac{1}{8}B_{4,2}+\frac{3}{2}B_{3,2}-\frac{1}{8}B_{3,3}, \\ &{}\\ L_{3,3}=&{}-\frac{1}{40}(B_{3,0}+B_{0,3})+\frac{1}{40}(B_{3,1}+B_{1,3})-\frac{1}{8}(B_{3,2}+B_{2,3})+\frac{3}{2}B_{3,3}\\ &{}-\frac{1}{8}(B_{3,4}+B_{4,3}). \end{array} \end{aligned}$$

Along the lower edge, for \(i=5,\ldots ,m-4\), we have:

$$\begin{aligned} \begin{array}{ll} L_{i,0}=&\frac{12}{5}B_{i,0}-\frac{7}{30}B_{i,1}-\frac{1}{12}(B_{i-1,1}+B_{i+1,1}), \end{array} \end{aligned}$$

and for \(i=4,\ldots ,m-3\):

$$\begin{aligned} \begin{array}{ll} L_{i,1}=&{}-\frac{9}{8}B_{i,0}-\frac{1}{4}(B_{i-1,0} +B_{i+1,0})+\frac{13}{8}B_{i,1}-\frac{1}{8}B_{i,2}, \\ &{}\\ L_{i,2}=&{}\frac{1}{8}(B_{i-1,0}+B_{i+1,0})-\frac{1}{6} B_{i,1}-\frac{1}{24}(B_{i-1,1}+B_{i+1,1})+\frac{3}{2}B_{i,2}\\ &{}-\frac{1}{8}(B_{i-1,2}+B_{i+1,2})-\frac{1}{8}B_{i,3},\\ &{}\\ L_{i,3}=&{}-\frac{1}{40}B_{i,0}+\frac{1}{40}B_{i,1}-\frac{1}{8}B_{i,2}+\frac{3}{2}B_{i,3}-\frac{1}{8}(B_{i-1,3}+B_{i+1,3})-\frac{1}{8}B_{i,4}.\\ \end{array} \end{aligned}$$

Taking into account the coefficient functional symmetries, analogous formulas exist for the three other edges and vertices of \(\varOmega \).

We remark that in case \(m,n < 8\) the fundamental functions have particular expressions, always obtained from the coefficient functionals given in [16].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagnino, C., Remogna, S. Quasi-interpolation based on the ZP-element for the numerical solution of integral equations on surfaces in \(\mathbb {R}^3\) . Bit Numer Math 57, 329–350 (2017). https://doi.org/10.1007/s10543-016-0633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-016-0633-x

Keywords

Mathematics Subject Classification

Navigation