Skip to main content
Log in

Transcriptomic response of Enterococcus faecalis to iron excess

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron is an essential nutrient for sustaining bacterial growth; however, little is known about the molecular mechanisms that govern gene expression during the homeostatic response to iron availability. In this study we analyzed the global transcriptional response of Enterococcus faecalis to a non-toxic iron excess in order to identify the set of genes that respond to an increment of intracellular iron. Our results showed an up-regulation of transcriptional regulators of the Fur family (PerR and ZurR), the cation efflux family (CzcD) and ferredoxin, while proton-dependent Mn/Fe (MntH) transporters and the universal stress protein (UspA) were down-regulated. This indicated that E. faecalis was able to activate a transcriptional response while growing in the presence of an excess of non-toxic iron, assuring the maintenance of iron homeostasis. Gene expression analysis of E. faecalis treated with H2O2 indicated that a fraction of the transcriptional changes induced by iron appears to be mediated by oxidative stress. A comparison of our transcriptomic data with a recently reported set of differentially expressed genes in E. faecalis grown in blood, revealed an important fraction of common genes. In particular, genes associated to oxidative stress were up-regulated in both conditions, while genes encoding the iron uptake system (feo and ycl operons) were up-regulated when cells were grown in blood. This suggested that blood cultures mimic an iron deficit, and was corroborated by measuring feo and ycl expression in E. faecalis treated with the iron chelating agent 2,2-dipyridil. In summary, our group identified an adaptive transcriptional mechanism in response to metal ion stress in E. faecalis, providing a foundation for future in-depth functional studies of the iron-activated regulatory network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews SC (1998) Iron storage in bacteria. Adv Microb Physiol 40:281–351

    Article  PubMed  CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  PubMed  CAS  Google Scholar 

  • Baichoo N, Wang T, Ye R, Helmann JD (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45:1613–1629

    Article  PubMed  CAS  Google Scholar 

  • Beinert H, Holm RH, Munck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659

    Article  PubMed  CAS  Google Scholar 

  • Bizzini A, Zhao C, Auffray Y, Hartke A (2009) The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 64:1196–1202

    Article  PubMed  CAS  Google Scholar 

  • Bourgogne A et al (2008) Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9:R110

    Article  PubMed  Google Scholar 

  • Bronstein PA, Filiatrault MJ, Myers CR, Rutzke M, Schneider DJ, Cartinhour SW (2008) Global transcriptional responses of Pseudomonas syringae DC3000 to changes in iron bioavailability in vitro. BMC Microbiol 8:209

    Article  PubMed  Google Scholar 

  • Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo-transport of ferrous iron into bacteria. Biometals 19:143–157

    Article  PubMed  CAS  Google Scholar 

  • Chazarreta-Cifre L, Martiarena L, de Mendoza D, Altabe SG (2011) Role of ferredoxin and flavodoxins in Bacillus subtilis fatty acid desaturation. J Bacteriol 193:4043–4048

    Article  PubMed  CAS  Google Scholar 

  • Coelho Abrantes M, Lopes Mde F, Kok J (2011) Impact of manganese, copper and zinc ions on the transcriptome of the nosocomial pathogen Enterococcus faecalis V583. PLoS ONE 6:e26519

    Article  Google Scholar 

  • Cornelis P, Andrews SC (eds) (2010) Iron uptake and homeostasis in microorganisms. Caister Academic Press, Norfolk

    Google Scholar 

  • Cornelis P, Wei Q, Andrews SC, Vinckx T (2011) Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 3:540–549

    Article  PubMed  Google Scholar 

  • Domann E et al (2007) Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. Int J Med Microbiol 297:533–539

    Article  PubMed  CAS  Google Scholar 

  • Dowd GC, Casey PG, Begley M, Hill C, Gahan CG (2012) Investigation of the role of ZurR in the physiology and pathogenesis of Listeria monocytogenes. FEMS Microbiol Lett 327:118–125

    Google Scholar 

  • Faulkner MJ, Helmann JD (2010) Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis. Antioxid Redox Signal 15:175–189

    Article  Google Scholar 

  • Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of enterococcus. Microbiology 155:1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg L, Brugna M, Hederstedt L (2002) Enterococcus faecalis heme-dependent catalase. J Bacteriol 184:6351–6356

    Article  PubMed  CAS  Google Scholar 

  • Giridhara Upadhyaya PM, Ravikumar KL, Umapathy BL (2009) Review of virulence factors of enterococcus: an emerging nosocomial pathogen. Indian J Med Microbiol 27:301–305

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez M, Tapia L, Alvarado M, Tornero J, Fernandez R (1999) Intracellular determination of elements in mammalian cultured cells by total reflection X-ray fluorescence spectrometry. J Anal Atom Spectrom 14:885–888

    Article  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  PubMed  CAS  Google Scholar 

  • Hobman JL, Yamamoto K, Oshima T (2007) Transcriptomic responses of bacterial cells to sublethal metal ion stress. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Berlin, pp 73–115

    Chapter  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  • Klitgaard K, Friis C, Angen O, Boye M (2010) Comparative profiling of the transcriptional response to iron restriction in six serotypes of Actinobacillus pleuropneumoniae with different virulence potential. BMC Genomics 11:698

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman TG, van der Kooi-Pol MM, Bijlsma JJ, Kuipers OP (2007) The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zn2+-resistance gene czcD in Streptococcus pneumoniae. Mol Microbiol 65:1049–1063

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals 20:485–499

    Article  PubMed  CAS  Google Scholar 

  • Lenz CA, Hew Ferstl CM, Vogel RF (2010) Sub-lethal stress effects on virulence gene expression in Enterococcus faecalis. Food Microbiol 27:317–326

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Luzzaro F, Ortisi G, Larosa M, Drago M, Brigante G, Gesu G (2011) Prevalence and epidemiology of microbial pathogens causing bloodstream infections: results of the OASIS multicenter study. Diagn Microbiol Infect Dis 69:363–369

    Article  PubMed  Google Scholar 

  • Lyytikainen O, Lumio J, Sarkkinen H, Kolho E, Kostiala A, Ruutu P (2002) Nosocomial bloodstream infections in Finnish hospitals during 1999–2000. Clin Infect Dis 35:e14–e19

    Article  PubMed  CAS  Google Scholar 

  • McHugh JP et al (2003) Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278:29478–29486

    Article  PubMed  CAS  Google Scholar 

  • Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65

    PubMed  CAS  Google Scholar 

  • Nachin L, Nannmark U, Nystrom T (2005) Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J Bacteriol 187:6265–6272

    Article  PubMed  CAS  Google Scholar 

  • Odermatt A, Solioz M (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem 270:4349–4354

    Article  PubMed  CAS  Google Scholar 

  • Palmer KL et al (2010) High-quality draft genome sequences of 28 Enterococcus sp. isolates. J Bacteriol 192:2469–2470

    Article  PubMed  CAS  Google Scholar 

  • Paulsen IT et al (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074

    Article  PubMed  CAS  Google Scholar 

  • Py B, Barras F (2010) Building Fe-S proteins: bacterial strategies. Nat Rev Microbiol 8:436–446

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Jara A et al (2010) Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure. Biometals 23:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Richer E, Courville P, Bergevin I, Cellier MF (2003) Horizontal gene transfer of “prototype” Nramp in bacteria. J Mol Evol 57:363–376

    Article  PubMed  CAS  Google Scholar 

  • Rigottier-Gois L et al (2011) Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. PLoS ONE 6:e29023

    Article  PubMed  CAS  Google Scholar 

  • Rince A, Giard JC, Pichereau V, Flahaut S, Auffray Y (2001) Identification and characterization of gsp65, an organic hydroperoxide resistance (ohr) gene encoding a general stress protein in Enterococcus faecalis. J Bacteriol 183:1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Garbajosa P et al (2006) Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J Clin Microbiol 44:2220–2228

    Article  PubMed  CAS  Google Scholar 

  • Salvail H, Masse E (2012) Regulating iron storage and metabolism with RNA: an overview of posttranscriptional controls of intracellular iron homeostasis. Wiley Interdiscip Rev RNA 3:26–36

    Article  PubMed  CAS  Google Scholar 

  • Semsey S, Andersson AM, Krishna S, Jensen MH, Masse E, Sneppen K (2006) Genetic regulation of fluxes: iron homeostasis of Escherichia coli. Nucleic Acids Res 34:4960–4967

    Article  PubMed  CAS  Google Scholar 

  • Sevrioukova IF (2005) Redox-dependent structural reorganization in putidaredoxin, a vertebrate-type [2Fe-2S] ferredoxin from Pseudomonas putida. J Mol Biol 347:607–621

    Article  PubMed  CAS  Google Scholar 

  • Shankar N, Baghdayan AS, Gilmore MS (2002) Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417:746–750

    Article  PubMed  CAS  Google Scholar 

  • Shin JH, Jung HJ, An YJ, Cho YB, Cha SS, Roe JH (2011) Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci U S A 108:5045–5050

    Article  PubMed  CAS  Google Scholar 

  • Solheim M, Aakra A, Vebo H, Snipen L, Nes IF (2007) Transcriptional responses of Enterococcus faecalis V583 to bovine bile and sodium dodecyl sulfate. Appl Environ Microbiol 73:5767–5774

    Article  PubMed  CAS  Google Scholar 

  • van Vliet AH, Baillon MA, Penn CW, Ketley JM (2001) The iron-induced ferredoxin FdxA of Campylobacter jejuni is involved in aerotolerance. FEMS Microbiol Lett 196:189–193

    Article  PubMed  Google Scholar 

  • Vebo HC, Snipen L, Nes IF, Brede DA (2009) The transcriptome of the nosocomial pathogen Enterococcus faecalis V583 reveals adaptive responses to growth in blood. PLoS ONE 4:e7660

    Article  PubMed  Google Scholar 

  • Verneuil N et al (2006) Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiology 152:2579–2589

    Article  PubMed  CAS  Google Scholar 

  • Zawadzka AM et al (2009) Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc Natl Acad Sci USA 106:21854–21859

    Article  PubMed  CAS  Google Scholar 

  • Zhao C et al (2010) Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect Immun 78:3889–3897

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT (grants 1110427 to MG and 1090211 to VC) and Fondo Nacional de Desarrollo de Areas Prioritarias, FONDAP, project number 15090007, Center for Genome Regulation (CGR) to MG and VC. AR-J is recipient of the “Inserción de Capital Humano Avanzado en la Academia from CONICYT” grant, number 791100002. ML is a recipient of a Doctoral fellowship from CONICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio González.

Additional information

Guadalupe López, Mauricio Latorre and Angélica Reyes-Jara contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, G., Latorre, M., Reyes-Jara, A. et al. Transcriptomic response of Enterococcus faecalis to iron excess. Biometals 25, 737–747 (2012). https://doi.org/10.1007/s10534-012-9539-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9539-5

Keywords

Navigation