Skip to main content
Log in

Crystal structures, antioxidation and DNA binding properties of Yb(III) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carbaldehyde and four aroylhydrazines

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

X-ray crystal and other structural analyses indicate that Yb(III) and all four newly synthesized ligands can form a binuclear Yb(III) complex with a 1:1 metal to ligand stoichiometry by octacoordination at the Yb(III) center. Investigations of DNA binding properties show that all the ligands and Yb(III) complexes can bind to Calf thymus DNA through intercalations with the binding constants at the order of magnitude 105–107 M−1, but Yb(III) complexes present stronger affinities to DNA than ligands. All the ligands and Yb(III) complexes may be used as potential anticancer drugs. Investigations of antioxidation properties show that all the ligands and Yb(III) complexes have strong scavenging effects for hydroxyl radicals and superoxide radicals but Yb(III) complexes show stronger scavenging effects for hydroxyl radicals than ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht M, Osetska O, Fröhliich R (2005) 2-[(8-Hydroxyquinolinyl)methylene]hydrazinecarboxamide: expanding the coordination sphere of 8-hydroxyquinoline for coordination of rare-earth metal (III) ions. Dalton Trans 23:3757–3762. doi:10.1039/b507621h

    Article  PubMed  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922. doi:10.1073/pnas.90.17.7915

    Article  PubMed  CAS  Google Scholar 

  • Ayar A, Mercimek B (2006) Interaction of nucleic acid bases and nucleosides with cobalt ions immobilized in a column system. Process Biochem 41:1553–1559

    Article  CAS  Google Scholar 

  • Bagatolli LA, Kivatinitz SC, Fidelio GD (1996) Interaction of small ligands with Human serum albumin IIIA subdomain. How to determine the affinity constant using an easy steady state fluorescent method. J Pharm Sci 85:1131–1132

    Article  PubMed  CAS  Google Scholar 

  • Baldini M, Belicchi-Ferrari M, Bisceglie F, Pelosi G, Pinelli S, Tarasconi P (2003) Cu(II) complexes with heterocyclic substituted Thiosemicarbazones: the case of 5-Formyluracil synthesis, characterization, X-ray structures, DNA interaction studies, and biological activity. Inorg Chem 42:2049–2055

    Article  PubMed  CAS  Google Scholar 

  • Barton JK, Danishefsky AT, Goldberg JM (1984) Tris(phenanthroline)ruthenium(II): stereoselectivity in Binding to DNA. J Am Chem Soc 106:2172–2176

    Article  CAS  Google Scholar 

  • Barton JK, Goldberg JM, Kumar CV, Turro NJ (1986) Binding modes and base specificity of tris(phenanthroline) ruthenium(II) enantiomers with nucleic acids: tuning the stereoselectivity. J Am Chem Soc 108:2081–2088. doi:10.1021/ja00268a057

    Article  CAS  Google Scholar 

  • Behrens C, Harrit N, Nielsen PE (2001) Synthesis of a Hoechst 32258 analogue amino acid building block for direct incorporation of a fluorescent, high-affinity DNA binding motif into peptides. Bioconjugate Chem 12:1021–1027

    Article  CAS  Google Scholar 

  • Berezhkovskiy LM, Astafieva IV, Cardoso C (2002) Analysis of peptide affinity to major histocompatibility complex proteins for the two-step binding mechanism. Anal Biochem 308:239–246

    Article  PubMed  CAS  Google Scholar 

  • Chaires JB, Dattagupta N, Crothers DM (1982) Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on the interaction of daunomycin with deoxyribonucleic acid. Biochemistry 21:3933–3940. doi:10.1021/bi00260a005

    Article  PubMed  CAS  Google Scholar 

  • Chen XM, Cai JW (2003) Single-crystal structural analysis. Principles and practices. Science Press, Beijing

    Google Scholar 

  • Chen AY, Yu C, Gatto B, Liu LF (1993) DNA minor groove-binding ligands: a different class of mammalian DNA topoisomerase I inhibitors. Proc Natl Acad Sci USA 90:8131–8135. doi:10.1073/pnas.90.17.8131

    Article  PubMed  CAS  Google Scholar 

  • Chiang SY, Welch J, Rauscher FJ, Beerman TA (1994) Effects of minor groove binding drugs on the interaction of TATA box binding protein and TFIIA with DNA. Biochemistry 33:7033–7040. doi:10.1021/bi00189a003

    Article  PubMed  CAS  Google Scholar 

  • El-Asmy AA, El-Sonbati AZ, Ba-Issa AA, Mounir M (1990) Synthesis and properties of 7-formyl-8-hydroxyquinoline and its transition metal complexes. Transit Met Chem 5:222–225. doi:10.1007/BF01038379

    Article  Google Scholar 

  • Frau S, Bernadou J, Meunier B (1997) Nuclease activity and binding characteristics of a cationic “Manganese porphyrin-bis(benzimidazole) dye (Hoechst 33258)” conjugate. Bioconjugate Chem 8:222–231

    Article  CAS  Google Scholar 

  • Geary WJ (1971) The use of conductivity measurements in organic solvents for the charaterisation of coordination compounds. Coord Chem Rev 7:81–122

    Article  CAS  Google Scholar 

  • Guo ZY, Xing RE, Liu S, Yu HH, Wang PB, Li CP, Li PC (2005) The synthesis and antioxidant activity of the Schiff bases of chitosan and carboxymethyl chitosan. Bioorg Med Chem Lett 15:4600–4603. doi:10.1016/j.bmcl.2005.06.095

    Article  PubMed  CAS  Google Scholar 

  • Hecht SM (1986) The chemistry of activated bleomycin. Acc Chem Res 19:383–391. doi:10.1021/ar00132a002

    Article  CAS  Google Scholar 

  • Hodnett EM, Dunn WJ (1972) Cobalt derivatives of Schiff bases of aliphatic amines as antitumor agents. J Med Chem 15:339. doi:10.1021/jm00273a037

    Article  PubMed  CAS  Google Scholar 

  • Hodnett EM, Mooney PD (1970) Antitumor activities of some Schiff bases. J Med Chem 13:786. doi:10.1021/jm00298a065

    Article  PubMed  CAS  Google Scholar 

  • Horton AA, Fairhurst S (1987) Lipid peroxidation and mechanisms of toxicity. Crit Rev Toxicol 18:27–29. doi:10.3109/10408448709089856

    Article  PubMed  CAS  Google Scholar 

  • Hunter RB, Walker W (1956) Anticoagulant action of Neodymium 3-Sulpho-isonicotinate. Nature 178:47. doi:10.1038/178047a0

    Article  PubMed  CAS  Google Scholar 

  • Ismail TMA (2005) Mononuclear and binuclear Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of Schiff-base ligands derived from 7-formyl-8-hydroxyquinoline and diaminonaphthalenes. J Coord Chem 58:141–151

    Article  CAS  Google Scholar 

  • Kramsch DM, Aspen AJ, Rozler LJ (1981) Atherosclerosis: prevention by agents not affecting abnormal levels of blood lipids. Science 213:1511–1512. doi:10.1126/science.6792706

    Article  PubMed  CAS  Google Scholar 

  • Krishna AG, Kumar DV, Khan BM, Rawal SK, Ganesh KN (1998) Taxol–DNA interactions: fluorescence and CD studies of DNA groove binding properties of taxol. Biochim Biophys Acta 1381:104–112

    PubMed  CAS  Google Scholar 

  • Li ZL, Chen JH, Zhang KC, Li ML, Yu RQ (1991) Fluorescent study on the primary screening for nonplatinum type of Schiff-base antitumor complexes. Science in China Series B: Chemistry 11:1193–1200

    Google Scholar 

  • Lippard SJ (1978) Platinum complexes: probes of polynucleotide structure and antitumor drugs. Acc Chem Res 11:211–217. doi:10.1021/ar50125a006

    Article  CAS  Google Scholar 

  • Liu YC, Yang ZY, Du J, Yao XJ, Lei RX, Zheng XD, Liu JN, Hu HS, Li H (2008) Study on the interactions of Kaempferol and Quercetin with intravenous immunoglobulin by fluorescence quenching, Fourier transformation infrared spectroscopy and circular dichroism spectroscopy. Chem Pharm Bul 56:443–451

    Article  CAS  Google Scholar 

  • Lo SF, Mulabagal V, Chen CL, Kuo CL, Tsay HS (2004) Bioguided fractionation and isolation of free radical scavenging components from in vitro propagated Chinese medicinal plants Dendrobium tosaense Makino and Dendrobium moniliforme SW. J Agric Food Chem 52:6916–6919. doi:10.1021/jf040017r

    Article  PubMed  CAS  Google Scholar 

  • Lu XH, Lin QY, Kong LC, He XQ (2006) Synthesis of binuclear rare earth complexes of N, N′-bis(2-pyri-dinecarboxamide)-1, 2-ethane and study on their Interaction with deoxyribonucleic acid. Chem Res Appl 18:1380–1385

    CAS  Google Scholar 

  • Lu HL, Liang JJ, Zeng ZZ, Xi PX, Liu XH, Chen FJ, Xu ZH (2007) Three salicylaldehyde derivative Schiff base ZnII complexes: synthesis, DNA binding and hydroxyl radical scavenging capacity. Transit Metal Chem 32:564–569

    Article  CAS  Google Scholar 

  • Mahadevan S, Palaniandavar M (1997) Spectroscopic and voltammetric studies of copper(II) complexes of bis(pyrid-2-yl)-di/trithia ligands bound to calf thymus DNA. Inorg Chim Acta 254:291–302. doi:10.1016/S0020-1693(96)05175-4

    Article  Google Scholar 

  • McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86:469–489. doi:10.1016/0022-2836(74)90031-X

    Article  PubMed  CAS  Google Scholar 

  • Moawad MM, Hanna WG (2002) Structural and antimicrobial studies of some divalent transition metal complexes with some new symmetrical bis(7-formylanil substituented-sulfoxine) Schiff base ligands. J Coord Chem 55:439–457

    Article  CAS  Google Scholar 

  • Ou-Yang JM (1997) Synthesis properties and characterization of the complexes of 2-(N-hexadecylcarbamoyl)-8-hydroxyqunoline. J Inorg Chem 13:315–319

    CAS  Google Scholar 

  • Palchaudhuri R, Hergenrother PJ (2007) DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol 18:497–503

    Article  PubMed  CAS  Google Scholar 

  • Parker D, Dickins RS, Puschmann H, Crossland C, Howard JAK (2002) Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem Rev 102:1977–2010. doi:10.1021/cr010452+

    Article  PubMed  CAS  Google Scholar 

  • Pyle AM, Morii T, Barton JK (1990) Probing microstructures in double-helical DNA with chiral metal complexes: recognition of changes in base-pair propeller twisting in solution. J Am Chem Soc 112:9432–9434. doi:10.1021/ja00181a077

    Article  CAS  Google Scholar 

  • Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither Δ-nor Λ-Tris(phenanthroline)ruthenium(II) Binds to DNA by classical intercalation. Biochemistry 31:9319–9324. doi:10.1021/bi00154a001

    Article  PubMed  CAS  Google Scholar 

  • Scatchard G (1949) The attractions of protein for small molecules and ions. Ann N Y Acad Sci 51:660–673. doi:10.1111/j.1749-6632.1949.tb27297.x

    Article  CAS  Google Scholar 

  • Schmidt LH (1969) Chemotherapy of the drug-resistant malarias. Annu Rev Microbiol 23:427–454. doi:10.1146/annurev.mi.23.100169.002235

    Article  PubMed  CAS  Google Scholar 

  • Sheldrick GM (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr A 46:467–473. doi:10.1107/S0108767390000277

    Article  Google Scholar 

  • Sigman DS, Mazumder A, Perrin DM (1993) Chemical nucleases. Chem Rev 93:2295–2316

    Article  CAS  Google Scholar 

  • Snyder RD (2007) Assessment of atypical DNA intercalating agents in biological and in silico systems. Mutat Res 623:72–82

    PubMed  CAS  Google Scholar 

  • Suh D, Chaires JB (1995) Criteria for the mode of binding of DNA binding agents. Bioorg Med Chem 3:723–728. doi:10.1016/0968-0896(95)00053-J

    Article  PubMed  CAS  Google Scholar 

  • Ueda J-i, Saito N, Shimazu Y, Ozawa T (1996) A comparison of scavenging abilities of antioxidants against hydroxyl radicals. Arch Biochem Biophys 333:377–384

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yang ZY, Wang Q, Cai QK, Yu KB (2005) Crystal structure, antitumor activities and DNA-binding properties of the La(III) complex with Phthalazin-1(2H)-one prepared by a novel route. J Organomet Chem 690:4557–4563

    Article  CAS  Google Scholar 

  • Wang HL, Yang ZY, Wang BD (2006) Synthesis, characterization and the antioxidative activity of copper(II), zinc(II) and nickel(II) complexes with naringenin. Transit Met Chem 31:470–474. doi:10.1007/s11243-006-0015-3

    Article  CAS  Google Scholar 

  • Wang BD, Yang ZY, Crewdson P, Wang DQ (2007) Synthesis, crystal structure and DNA-binding studies of the Ln(III) complex with 6-hydroxychromone-3-carbaldehyde benzoyl hydrazone. J Inorg Biochem 101:1492–1504. doi:10.1016/j.jinorgbio.2007.04.007

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn CC (1979) Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals. Biochem J 182:625–628

    PubMed  CAS  Google Scholar 

  • Winterbourn CC (1981) Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide. Biochem J 198:125–131

    PubMed  CAS  Google Scholar 

  • Woynarowski JM, Mchugh M, Sigmund RD, Beerman TA (1989) Modulation of Topoisomerase II catalytic ativity by DNA minor groove binding agents distamycin, Hoechst 33258 and 4′, 6-Diamidine-2-phenylindole. Mol Pharmacol 35:177–182

    PubMed  CAS  Google Scholar 

  • Wu JZ, Ye BH, Wang L, Ji LN, Zhou JY, Li RH, Zhou ZY (1997) Bis(2, 2’-bipyridine)ruthenium(II) complexes with imidazo[4, 5-f][1, 10]-phenanthroline or 2-phenylimidazo[4, 5-f][1, 10]phenanthroline. J Chem Soc Dalton Tran 8:1395–1402

    Article  Google Scholar 

  • Xing R, Yu H, Liu S, Zhang W, Zhang Q, Li Z, Li P (2005) Antioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorg Med Chem 13:1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Yang MM, Yang P, Zhang LW (1994) Study on interaction of caffeic acid series medicine and albumin by fluorescence method. Chin Sci Bull 9:31–36

    Google Scholar 

  • Zeng YB, Yang N, Liu WS, Tang N (2003) Synthesis, characterization and DNA-binding properties of La(III) complex of chrysin. J Inorg Biochem 97:258–264. doi:10.1016/S0162-0134(03)00313-1

    Article  PubMed  CAS  Google Scholar 

  • Zsila F, Bikádi Z, Simonyi M (2004) Circular dichroism spectroscopic studies reveal pH dependent binding of curcumin in the minor groove of natural and synthetic nucleic acids. Org Biomol Chem 2:2902–2910. doi:10.1039/b409724f

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Natural Science Foundation of China (20475023) and Gansu NSF (3ZS 041-A25-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-yin Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 294 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Yc., Yang, Zy. Crystal structures, antioxidation and DNA binding properties of Yb(III) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carbaldehyde and four aroylhydrazines. Biometals 22, 733–751 (2009). https://doi.org/10.1007/s10534-009-9221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9221-8

Keywords

Navigation