Skip to main content
Log in

Co-metabolism of nonylphenol ethoxylate in sequencing batch reactor under aerobic conditions

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The study evaluated the co-metabolism of nonylphenol polyethoxylate (NPEO) within a main substrate stream subjected to biodegradation in an activated sludge system. Peptone mixture simulating sewage was selected as the synthetic substrate. As a novel approach, the NPEO concentration was magnified to match the COD level of the peptone mixture, so that co-metabolism could be evaluated by respirometry and modeling. A sequencing batch reactor (SBR) set-up at high sludge age to also allow nitrification was operated for this purpose. A long acclimation phase was necessary to start NPEO biodegradation, which was completed with 15% residual by-products. Modeling of respirometric data could identify COD fractions of NPEO with corresponding process kinetics for the first time, where the biodegradation of by-products could be interpreted numerically as a hydrolysis mechanism. Nonylphenol diethoxylate (NP2EO) was observed as the major by-product affecting the biodegradation of NPEO, because NPEO and NP2EO accounted for 60 to 70% of the total soluble COD in the solution during the course of biological reactions. The co-metabolism characteristics basically defined NPEO as a substrate, with no appreciable inhibitory action on the microbial culture both in terms of heterotrophic and autotrophic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

This work is funded by ITU Scientific Research Fund with project entitled “Fate of nonylphenol and nonylphenol ethoxylates in the aerobic and anaerobic stabilization of municipal treatment sludge” Project No: 36634.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Cokgor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekdal, A., Okutman Tas, D., Zengin, G.E. et al. Co-metabolism of nonylphenol ethoxylate in sequencing batch reactor under aerobic conditions. Biodegradation 33, 181–194 (2022). https://doi.org/10.1007/s10532-022-09974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-022-09974-1

Keywords

Navigation