Skip to main content
Log in

A Hydrodynamic Bench for Testing Pediatric Circulatory Support Devices

  • Published:
Biomedical Engineering Aims and scope

A universal design of a pediatric hydrodynamic bench for testing various techniques of mechanical circulatory support has been developed. The bench provides high-accuracy simulation of the basic hemodynamic parameters of the pediatric circulatory system under normal conditions and heart failure. The hydrodynamic bench was used to simulate the interaction of the left and right ventricles of the heart with an implanted pediatric axial pump under conditions of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dipchand, A. I., Edwards, L. B., Kucheryavaya, A. Y., Benden, C., Dobbels, F., Levvey, B. J., et al., “The registry of the International Society for Heart and Lung Transplantation: Seventeenth official pediatric heart transplantation report 2014; Focus theme: Retransplantation,” J. Heart Lung Transplant., 33, No. 10, 985-995 (2014).

    Article  Google Scholar 

  2. Baldwin, J. T., Borovetz, H. S., Brian, W., Duncan, B. W., Jarvik, R. K., and Weiss, W. J., “The National Heart, Lung, and Blood Institute Pediatric Circulatory Support Program: A Summary of the 5-year experience,” Circulation, 123, No. 11, 1233-1240 (2011).

    Article  Google Scholar 

  3. Kozlov, V. A., Dmitrieva, O. Yu., Itkin, G. P., Ivanov, A. S., Kuleshov, A. P., Volkova, E. A., and Govorova, T. N., “Optimization of the installation of the pediatric axial pump Don-3 in the chest cavity of a child (study on a mathematical model),” Vestn. Transplantol. Isk. Org., 20, No. 3, 40-44 (2018).

    Google Scholar 

  4. Itkin, G. P., Drobyshev, A. A., Dmitrieva, O. Yu., Buchnev, A. S., and Sysoev, A. A., “A study of the interaction of the left ventricle of the heart with non-pulsating flow pumps on a hydrodynamic stand under normal and pathological conditions,” Vestn. Transplantol. Isk. Org., 17, No. 3, 43-49 (2015).

    Google Scholar 

  5. Itkin, G. P., Buchnev, A. S., Kuleshov, A.P., and Drobyshev, A. A., “Hemodynamic evaluation of the new pulsatile flow generation method in vitro,” Int. J. Artif. Org., 21, No. 3, 69-75 (2019).

    Google Scholar 

  6. Granegger, M., Aigner, P., Haberl, T., Mahr, S., Tamez, D. A., Graham, J., et al., “Interaction of a transapical miniaturized ventricular assist device with the left ventricle: Hemodynamic evaluation and visualization in an isolated heart setup,” Artif. Org., 40, 1113-1120 (2016).

    Article  Google Scholar 

  7. Westerhof, N., Elsinger, G., and Sipkema, P., “An artificial arterial system for pumping heart,” J. Appl. Physiol., 31, No. 5, 776-781 (1971).

    Article  CAS  Google Scholar 

  8. Itkin, G. P., Drobyshev, A. A., Buchnev, A. S., Kuleshov, A.P., and Nosov, M. S., A Device for Blood Flow Control in Extracorporeal LVAD [in Russian], RF Patent No. 201911 (2020).

  9. Itkin, G. P., Nosov, M. S., Kuleshov, A.P., Drobyshev, A. A., and Buchnev, A. S., A Device for Blood Flow Control in Implantable LVAD [in Russian], RF Patent No. 202952 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Syrbu.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 56, No. 1, Jan.-Feb., 2022, pp. 5-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itkin, G.P., Buchnev, A.S., Kuleshov, A.P. et al. A Hydrodynamic Bench for Testing Pediatric Circulatory Support Devices. Biomed Eng 56, 6–10 (2022). https://doi.org/10.1007/s10527-022-10156-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-022-10156-9

Navigation