Skip to main content

Advertisement

Log in

Potential Power Supply Methods for Implanted Devices

  • Published:
Biomedical Engineering Aims and scope

This review addresses questions of the specific characteristics of power supply to implanted devices (ID), including the service life of supply elements and the level of power consumption of contemporary devices, the acceptable weight and size characteristics of ID, and priority areas for implantation. Known methods of energy transmission and transformation are compared and the ranges of potential specific power for these are determined −0.1-100 mW/cm2 for wireless energy transmission, 0.0001-0.1 mW/cm2 for transformation of energy for sources specific to biological objects, and less than 0.0001 mW/cm2 for isotope power sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caldara, M., Nodari, B., Re, V., and Bonandrini, B., “Miniaturized blood pressure telemetry system with RFID interface,” Electronics, 5, 51 (2016).

    Article  Google Scholar 

  2. Zeng, F.-G., Rebscher, S., Harrison, W., Sun, X., and Feng, H., “Cochlear implants: System design, integration, and evaluation,” IEEE Rev. Biomed. Eng., 1, 115-142 (2008).

    Article  Google Scholar 

  3. Mestais, C. S., Charvet, G., Sauter-Starace, F., Foerster, M., Ratel, D., and Benabid, A. L., “WIMAGINE: Wireless 64-channel ECoG recording implant for long term clinical applications,” IEEE Trans. Neural Syst. Rehabil. Eng., 23, No. 1, 10-21 (2015).

    Article  Google Scholar 

  4. Borton, D. A., Yin, M., Aceros, J., and Nurmikko, A., “An implantable wireless neural interface for recording cortical circuit dynamics in moving primates,” J. Neural Eng., 10, No. 2 (2013).

  5. Medtronic Micra Clinician Manual, https://www.accessdata.fda.gov/cdrh-docs/pdf15/P150033d.pdf.

  6. Uddin, K., Perera, S., Widanage, W. D., Somerville, L., and Marco, J., “Characterising lithiumion battery degradation through the identification and tracking of electrochemical battery model parameters,” Batteries, 2, 13 (2016).

    Article  Google Scholar 

  7. Medical Power Sources, https://integer.net/product/medical-power-sources-crm/.

  8. Xu, B., Oudalov, A., Ulbig, A., Andersson, G., and Kirschen, D. S., “Modeling of lithiumion battery degradation for cell life assessment,” IEEE Trans. Smart Grid, No. 99. P. 1 (2016).

  9. Li, J., Murphy, E., Winnick, J., and Kohl, P. A., “The effects of pulse on cycling characteristics of commercial lithiumion batteries,” J. Power Sources, 102, No. 1, 302-309 (2001).

    Article  Google Scholar 

  10. Chang, W.-Y., “The state of charge estimating methods for battery: A review,” ISRN Applied Mathematics, 2013, 7 (2013).

    Article  Google Scholar 

  11. Schuler, B., Rettich, A., Vogel, J., Gassmann, M., and Arras, M., “Optimized surgical techniques and postoperative care improve survival rates and permit accurate telemetric recording in exercising mice,” BMC Vet. Res., 5, 28 (2009).

    Article  Google Scholar 

  12. Helwig, B. G., Blaha, M. D., and Leon, L. R., “Effect of intraperitoneal radiotelemetry instrumentation on voluntary wheel running and surgical recovery in mice,” J. Am. Assoc. Lab. Anim. Sci., 51, No. 5, 600-608 (2012).

    Google Scholar 

  13. Guidelines fort the Experimental (Preclinical) Study of Novel Pharmacological Substances, Corresponding Member of the Russian Academy of Medical Sciences Professor R. U. Khabriev (general editor), Meditsina, Moscow (2005).

  14. DSI Implantable Telemetry Brochure, http://www.datasci.com/.

  15. Medtronic Activa RC Model 37612 Multi-Program Rechargeable Neurostimulator Implant Manual, http://manuals.medtronic.com.

  16. Boston Scientific Precision Spinal Cord Stimulator System Clinician Manual, https://www.bostonscientific.com/.

  17. Rajappan, K., “Permanent pacemaker implantation technique. Part I,” Heart, 95, 259-264 (2009).

    Article  Google Scholar 

  18. Revishvili, A. Sh., et al., Arrhythmology: Clinical Guidelines for Electrophysiological Investigations, Catheter Ablation, and the Use of Implanted Antiarrhythmic Devices [in Russian], Geotar Media, Moscow (2010).

    Google Scholar 

  19. Kotsakou, M., Kioumis, I., and Lazaridis, G., “Pacemaker insertion,” Ann. Transl. Med., 3, No. 3, 42 (2015).

    Google Scholar 

  20. Moons, C. P. H., Hermans, K., Remie, R., Duchateau, L., and Odberg, F. O., “Intraperitoneal versus subcutaneous telemetry devices in young Mongolian gerbils (Meriones unguiculatus),” Lab. Anim., 41, No. 2, 262-271 (2007).

    Article  Google Scholar 

  21. Ahn, D. and Hong, S., “Wireless power transmission with self-regulated output voltage for biomedical implant,” IEEE Trans. Industrial Electronics, 61, No. 5, 2225-2235 (2014).

    Article  Google Scholar 

  22. Artan, N., Hitesh, V., Gurudath, V., Fu Zhen, Santosh, B., Nandor, L., Medveczky, G, and Chao, H., “A high-performance transcutaneous battery charger for medical implants. 2010 Conference Proceedings,” IEEE Eng. Med. Biol. Soc., 1, 1581-1584 (2010).

    Google Scholar 

  23. Jegadeesan, R., Nag, S., Agarwal, K., Thakor, N. V., and Yong-Xin, G., “Enabling wireless powering and telemetry for peripheral nerve implants,” IEEE J. Biomed. Health Inf., 19, No. 3, 958-970 (2015).

    Article  Google Scholar 

  24. Young, D. J., Cong, P., Suster, M. A., and Damaser, M., “Implantable wireless battery recharging system for bladder pressure chronic monitoring,” Lab. Chip, 15, 4338-4347 (2015).

    Article  Google Scholar 

  25. Sodagar, A. and Amiri, P., “Capacitive coupling for power and data telemetry to implantable biomedical microsystems,” in: NER ’09. 4th International IEEE/EMBS Conference (2009), pp. 411-414.

  26. Liu, X., Berger, J. L., Ogirala, A., and Mickle, M. H., “A touch probe method of operating an implantable RFID tag for orthopedic implant identification,” Biomedical Circuits and Systems, IEEE Transactions, 7, No. 3, 236-242 (2013).

    Article  Google Scholar 

  27. Chow, E. Y., Chlebowski, A. L., Chakraborty, S., Chappell, W. J., and Irazoqui, P. P., “Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent,” IEEE Trans. Biomed. Eng., 57, No. 6, 1487-1496 (2010).

    Article  Google Scholar 

  28. Ho, J. S., Yeh, A. J., Neofytou, E., Kim, S., Tanabe, Y., Patlolla, B., Beygui R. E., and Poon, A. S. Y., “Wireless power transfer to deep-tissue microimplants,” Proc. Nat. Acad. Sci. USA, 111, No. 22, 7974-7979 (2014).

    Article  Google Scholar 

  29. Liu, C., Guo Y.-X., Sun, H., and Xiao S., “Design and safety considerations of an implantable rectenna for far-field wireless power transfer,” IEEE Trans. Antennas Propag., 62, No. 11, 5798-5806 (2014).

    Article  MathSciNet  Google Scholar 

  30. Murakawa, K., Kobayashi, M., Nakamura, O., and Kawata, S. A., “Wireless near-infrared energy system for medical implants,” IEEE Eng. Med. Biol. Mag., 18, 70-72 (1999).

    Article  Google Scholar 

  31. Goto, K., Nakagawa, T., Nakamura, O., and Kawata, S., “An implantable power supply with an optically rechargeable lithium battery,” IEEE Trans. Biomed. Eng., 48, 830-833 (2001).

    Article  Google Scholar 

  32. Liu, H., Zhao, T., Jiang, W., Jia, R., Niu, D., Qiu, G., Fan, L., Li, X., Liu, W., Chen, B., Shi, Y., Yin, L., and Lu, B., “Flexible battery-less bioelectronic implants: wireless powering and manipulation by near-infrared light,” Adv. Funct. Mater., 25, 7071 (2015).

    Article  Google Scholar 

  33. Mazzilli, F., Peisino, M., Mitouassiwou, R., Cottй, B., Thoppay, P., Lafon, C., Favre, P., Meurville, E., and Dehollain, C., “In-vitro platform to study ultrasound as source for wireless energy transfer and communication for implanted medical devices,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 2010, 3751-3755 (2010).

    Google Scholar 

  34. Ozeri, S., Shmilovitz, D., Singer, S., and Wang, C., “Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter,” Ultrasonics, 50, 666-674 (2010).

    Article  Google Scholar 

  35. Maleki, T., Cao, N., Song, S. H., Kao, C., Ko, S. C. A., and Ziaie, B., “An ultrasonically powered implantable micro-oxygen generator (IMOG),” IEEE Trans. Biomed. Eng., 58, No. 11, 3104-3111 (2011).

    Article  Google Scholar 

  36. Dagdeviren, C., et al., “Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm,” Proc. Natl. Acad. Sci. USA, 111, No. 5, 1927-1932 (2014).

    Article  Google Scholar 

  37. Tashiro, R., Kabei, N., Katayama, K., Ishizuka, Y., Tsuboi, F., and Tsuchiya, K., “Development of an electrostatic generator that harnesses the motion of a living body,” Int. J. Jpn. Soc. Mechan. Eng., 43, 916-922 (2000).

    Google Scholar 

  38. Miao, P., Mitcheson, P., Holmes, A., Yeatman, E., Green, T., and Stark, B., “MEMS inertial power generators for biomedical applications,” Microsyst. Technol., 12, No. 10-11, 1079-1083 (2006).

  39. Goto, H., Sugiura, T., Harada, Y., and Kazui, T., “Feasibility of using the automatic generating system for quartz watches as a lead-less pacemaker power source,” Med. Biol. Eng. Comput., 37, No. 1, 377-380 (1999).

    Article  Google Scholar 

  40. Stark, I. and Stordeur, M., “New micro thermoelectric devices based on bismuth telluride-type thin solid films,” in: Proc. 18th Int. Conf. Thermoelectric (1999), pp. 465-472.

  41. Strasser, M., Aigner, R., Lauterbach, C., Sturm, T. F., Franosch, M., and Wachutka, G., “Micromachined CMOS thermoelectric generators as on-chip power supply,” Sensors Actuators A. Phys., 114, No. 2-3, 362-370 (2004).

    Article  Google Scholar 

  42. Chen, G., Ghaed, H., Haque, R., Wieckowski, M., Yejoong Kim, Gyouho Kim, Fick, D., Daeyeon Kim, Mingoo Seok, Wise, K., Blaauw, D., and Sylvester, D., “A cubic-millimeter energy-autonomous wireless intraocular pressure monitor,” IEEE International Solid-State Circuits Conference (2011), pp. 310-312.

  43. Drake, R., Kusserow, B., Messinger, S., and Matsuda S., “A tissue implantable fuel cell power supply,” ASAIO J., 16, No. 1, 199-205 (1970).

    Google Scholar 

  44. Weidlich, E., Richter, G., von Sturm, F., and Rao, J. R., “Animal experiments with biogalvanic and biofuel cells,” Biomaterials, Medical Devices, and Artificial Organs, No. 3-4, 227-306 (1976).

  45. Rapoport, B. I., Kedzierski, J. T., and Sarpeshkar, R., “A glucose fuel cell for implantable brain-machine interfaces,” PLoS ONE, 7, No. 6 (2012).

  46. Dong, K., Jia, B., Yu, C., Dong, W., Du, F., and Liu, H., “Microbial fuel cell as power supply for implantable medical devices: A novel configuration design for simulating colonic environment,” Biosens. Bioelectron., 41, 916-919 (2013).

    Article  Google Scholar 

  47. Mercier, P. P., Lysaght, A. C., Bandyopadhyay, S., Chandrakasan, A. P., and Stankovic, K. M., “Energy extraction from the biologic battery in the inner ear,” Nat. Biotechnol., 30, No. 12, 1240-1243 (2012).

    Article  Google Scholar 

  48. Widetronix, http://www.widetronix.com/.

  49. City Labs, http://www.citylabs.net/.

  50. Drews, J., Fehrmann, G., Staub, R., and Wolf, R., “Primary batteries for implantable pacemakers and defibrillators,” J. Power Sour., 97, 747-749 (2001).

    Article  Google Scholar 

  51. Mallela, V. S., Ilankumaran, V., and Rao, N. S., “Trends in cardiac pacemaker batteries,” Indian Pacing Electrophysiol. J., 4, 201 (2004).

    Google Scholar 

  52. RamRakhyani, A. K. and Lazzi, G., “Multicoil telemetry system for compensation of coil misalignment effects in implantable systems,” IEEE Antennas and Wireless Propagation Letters, 11, 1675-1678 (2012).

    Article  Google Scholar 

  53. Qusba, A., RamRakhyani, A. K., So, J., Hayes, G. J., Dickey, M. D., and Lazzi, G., “On the design of microfluidic implant coil for flexible telemetry system,” IEEE Sensors J., 14, No. 4, 1074-1080 (2014).

    Article  Google Scholar 

  54. Denisov, A. and Yeatman, E., “Ultrasonic vs. inductive power delivery for miniature biomedical implants,” in: 2010 Int. Conf. on Body Sensor Networks (2010), pp. 84-89.

  55. Jegadeesan, R., Guo, Y.-X., and Minkyu, J., “Electric near-field coupling for wireless power transfer in biomedical applications,” in: Proc. IEEE MTTS Int. Microw. Workshop Ser. RF Wireless Technol. Biomed. Healthcare Appl. (2013), pp. 1-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Gorskii.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 52, No. 3, May-Jun., 2018, pp. 43-47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorskii, O.V. Potential Power Supply Methods for Implanted Devices. Biomed Eng 52, 204–209 (2018). https://doi.org/10.1007/s10527-018-9814-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-018-9814-z

Navigation