Skip to main content
Log in

Simplified numerical approach for the structural analysis of monumental historical aggregates: the case study of Certosa di Calci

  • Original Article
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Monumental historical buildings are worldwide recognized as a fundamental component of the World Cultural Heritage to be preserved for future generations. Their structural performance analysis needs to face challenging issues such as the usually limited initial knowledge, the generally large dimensions, and the great structural complexity coming from overlapped construction phases over centuries. The structural behavior of historical constructions, therefore, differs from ordinary buildings, since resulting from the interaction of different parts, recognizable as ‘structural units’. A methodology accounting for all the peculiarities of monumental masonry buildings is proposed with reference to the specific case study of La Certosa di Calci (Italy). The monumental cluster is ideally decomposed into its structural units based on a preliminary knowledge phase, allowing to perform detailed structural analyses only on selected areas without resorting to a cumbersome and time demanding global model. The aggregate-effect influence over the structural behavior of a single unit is investigated by means of nonlinear analysis performed on different configurations. Achieved results are accurately analyzed, finally proposing a simplified model where one structural unit is represented through a FEM model and the interaction effects due to the adjacent portions are simulated through a calibrated spring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • ASCE 41–13 (2013) Seismic evaluation and upgrade of existing buildings. American Society of Civil Engineers (ASCE), Reston

    Google Scholar 

  • Aşıkoğlu A, Vasconcelos G, Lourenço PB, Pantò B (2020) Pushover analysis of unreinforced irregular masonry buildings: lessons from different modeling approaches. Eng Struct 218:110830

    Article  Google Scholar 

  • Baggio S, Berto L, Rocca I, Saetta A (2018) Vulnerability assessment and seismic mitigation intervention for artistic assets: from theory to practice. Eng Struct 167:272–286. https://doi.org/10.1016/j.engstruct.2018.03.093

    Article  Google Scholar 

  • Barbieri G, Biolzi L, Bocciarelli M, Fregonese L, Frigeri A (2013) Assessing the seismic vulnerability of a historical building. Eng Struct 57:523–535. https://doi.org/10.1016/j.engstruct.2013.09.045

    Article  Google Scholar 

  • Bartoli G, Betti M, Biagini P, Borghini A, Ciavattone A, Girardi M et al (2017) Epistemic uncertainties in structural modeling: a blind benchmark for seismic assessment of slender masonry towers. J Perform Constr Facil 31(5):04017067

    Article  Google Scholar 

  • Bernardini A, Lagomarsino S (2008) The seismic vulnerability of architectural heritage. Proc Inst Civ Eng-Struct Build 161(4):171–181. https://doi.org/10.1680/stbu.2008.161.4.171

    Article  Google Scholar 

  • Bernardini C, Maio R, Boschi S, Ferreira TM, Vicente R, Vignoli A (2019) The seismic performance-based assessment of a masonry building enclosed in aggregate in Faro (Portugal) by means of a new target structural unit approach. Eng Struct 191:386–400. https://doi.org/10.1016/j.engstruct.2019.04.040

    Article  Google Scholar 

  • Berto L, Doria A, Faccio P, Saetta A, Talledo D (2017) Vulnerability analysis of built cultural heritage: a multidisciplinary approach for studying the Palladio’s Tempietto Barbaro. Int J Archit Herit 11(6):773–790. https://doi.org/10.1080/15583058.2017.1290853

    Article  Google Scholar 

  • Betti M, Galano L (2012) Seismic analysis of historic masonry buildings: the vicarious palace in Pescia (Italy). Buildings 2(2):63–82

    Article  Google Scholar 

  • Betti M, Bartoli G, Orlando M (2010) Evaluation study on structural fault of a Renaissance Italian Palace. Eng Struct 32:1801–1813. https://doi.org/10.1016/j.engstruct.2010.03.001

    Article  Google Scholar 

  • Bianchini N, Mendes N, Lourenço P (2020) Seismic evaluation of Bagan heritage site (Myanmar): the Loka-Hteik-Pan temple. Elsevier Struct 24:905–921. https://doi.org/10.1016/j.istruc.2020.01.020

    Article  Google Scholar 

  • Boschi S, Borghini A, Pintucchi B, Zani N (2018) Seismic vulnerability of historic masonry buildings: a case study in the center of Lucca. Proced Struct Integr 11:169–176. https://doi.org/10.1016/j.prostr.2018.11.023

    Article  Google Scholar 

  • Braga AB, Lourenco PB, Mendes N (2019) Seismic assessment of the medieval Armenian church in Famagusta. Cyprus. https://doi.org/10.4401/ag-7076

    Article  Google Scholar 

  • Brignola A, Pampanin S, Podestà S (2009) Evaluation and control of the in-plane stiffness of timber floors for the performance-based retrofit of URM buildings. Bull N Z Soc Earthq Eng 42(3):204–221

    Google Scholar 

  • Cannizzaro F, Castellazzi G, Grillanda N, Pantò B, Petracca M (2021) Modelling the nonlinear static response of a 2-storey URM benchmark case study: comparison among different modelling strategies using two-and three-dimensional elements. Bull Earthq Eng 1–30

  • Cantisani E, Garzonio C, Ricci M, Vettori S (2013) Relationships between the petrographical, physical and mechanical properties of some Italian sandstones. Int J Rock Mech Min Sci 60:321–332

    Article  Google Scholar 

  • Caprili S, Puncello I (2019) Knowledge-based approach for the structural assessment of monumental buildings: application to case studies. Front Built Environ 5:52. https://doi.org/10.3389/fbuil.2019.00052

    Article  Google Scholar 

  • Caprili S, Mangini F, Paci S, Salvatore W, Bevilacqua MG, Karwacka E, Squeglia N, Barsotti R, Bennati S, Scarpelli G, Iannelli P (2017) A knowledge-based approach for the structural assessment of cultural heritage, a case study: La Sapienza Palace in Pisa. Bull Earthq Eng 15:4851–4886. https://doi.org/10.1007/s10518-017-0158-y

    Article  Google Scholar 

  • Caprili S, Mangini F, Salvatore W (2015) Numerical modelling, analysis and retrofit of the historical masonry building "La Sapienza", In: Papadrakakis M, Papadopoulos V, Plevris V (eds) COMPDYN 2015, 5th eccomas thematic conference on computational methods in structural dynamics and earthquake engineering, pp 772–787

  • Casarin F, Modena C (2008) Seismic assessment of complex historical buildings: application to Reggio Emilia Cathedral Italy. Int J Archit Herit 2(3):304–327

    Article  Google Scholar 

  • Castellazzi G, D’Altri AM, de Miranda S, Ubertini F (2017) An innovative numerical modeling strategy for the structural analysis of historical monumental buildings. Eng Struct 132:229–248

    Article  Google Scholar 

  • Castellazzi G, D’Altri AM, de Miranda S, Chiozzi A, Tralli A (2018) Numerical insights on the seismic behavior of a non-isolated historical masonry tower. Bull Earthq Eng 16(2):933–961. https://doi.org/10.1007/s10518-017-0231-6

    Article  Google Scholar 

  • Castori G, Borri A, De Maria A, Corradi M, Sisti R (2017) Seismic vulnerability assessment of a monumental masonry building. Eng Struct 136:454–465. https://doi.org/10.1016/j.engstruct.2017.01.035

    Article  Google Scholar 

  • Cattari S, Magenes G (2021) Benchmarking the software packages to model and assess the seismic response of unreinforced masonry existing buildings through nonlinear static analyses. Bull Earthq Eng 20:1–36

    Google Scholar 

  • Cattari S, Lagomarsino S, Resemini S (2012) Il ruolo delle volte nella risposta sismica degli edifici in muratura [The role of vaults in the seismic response of masonry buildings]. In: Borri A, Bussi L (eds) Archi e volte in zona sismica—Meccanica delle strutture voltate. Doppiavoce, Naples

    Google Scholar 

  • Chieffo N, Formisano A (2019) Comparative seismic assessment methods for masonry building aggregates: a case study. Front Built Environ 5:123

    Article  Google Scholar 

  • Chiumiento G, Formisano A (2019) Simplified and refined analyses for seismic investigation of historical masonry clusters: comparison of results and influence of the structural units position. Front Built Environ. https://doi.org/10.3389/fbuil.2019.00084

    Article  Google Scholar 

  • Circolare (2019) Circolare n. 7 del 21/01/2019, Istruzioni per l'applicazione dell'«Aggiornamento delle Norme tecniche per le costruzioni» di cui al DM 17 gennaio 2018. C.S.LL.PP

  • Clementi F, Gazzani V, Poiani M, Lenci S (2016) Assessment of seismic behaviour of heritage masonry buildings using numerical modelling. J Build Eng 8:29–47. https://doi.org/10.1016/j.jobe.2016.09.005

    Article  Google Scholar 

  • CNR-DT 206 (2007) Istruzioni per la progettazione, l’esecuzione ed il controllo delle strutture di Legno. CNR

  • Coli M, Livi E, Tanini C (2006) Pietra Serena mining in Fiesole. Part III: structural-mechanical characterization and mining. J min Sci 42(1):4–84

    Article  Google Scholar 

  • D’Amato M, Sulla R (2021) Investigations of masonry churches seismic performance with numerical models: application to a case study. Arch Civ Mech Eng 21(4):1–26

    Article  Google Scholar 

  • D’Amato M, Laguardia R, Di Trocchio G, Coltellacci M, Gigliotti R (2020) Seismic risk assessment for Masonry buildings typologies from L’Aquila 2009 earthquake damage data. J Earthq Eng 8:1–35

    Google Scholar 

  • Degli Abbati S, D’Altri A, Ottonelli D, Castellazzi G, Cattari S, Miranda S, Lagomarsino S (2019) Seismic assessment of interacting structural units in complex historic masonry constructions by nonlinear static analyses. Comput Struct. https://doi.org/10.1016/j.compstruc.2018.12.001

    Article  Google Scholar 

  • DIANA FEA (2020) DIsplacement method Analyzer DIANA FEA BV-finite element analysis user's manual release 10.4. https://dianafea.com/manuals/d105/Diana.html, Delft, The Netherlands

  • Drougkas A, Roca P, Molins C (2015) Numerical prediction of the behavior, strength and elasticity of masonry in compression. Eng Struct 90:15–28

    Article  Google Scholar 

  • EN-1998 (2005) "Eurocode 8: design of structures for earthquake reistance. British Standards Institution, London

    Google Scholar 

  • Vaiano G, Venanzi I, Formisano A, Ubertini F (2019) Seismic behaviour of isolate and aggregate masonry towers: the case study of the Sciri tower in Perugia, In: Papadrakakis M, Fragiadakis M (ed) COMPDYN 7th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, pp 1441–1459

  • Ferreira TM, Maio R, Vicente R (2017) Seismic vulnerability assessment of the old city centre of Horta, Azores: calibration and application of a seismic vulnerability index method. Bull Earthq Eng 15:2879–2899. https://doi.org/10.1007/s10518-016-0071-9

    Article  Google Scholar 

  • Formisano A, Chieffo N, Mosoarca M (2017) Seismic vulnerability and damage speedy estimation of an urban sector within the municipality of San Potito Sannitico (Caserta, Italy). Op Civ Eng J 11(1):1106–1121

    Article  Google Scholar 

  • Formisano A, Mazzolani F, Florio G, Landolfo R (2010) A quick methodology for seismic vulnerability assessment of historical masonry aggregates, In: Proceedings of the COST action C26 final conference “urban habitat constructions under catastrophic events, pp 16–18

  • Gioli A (2015) La Certosa di Calci nella Grande Guerra. Riuso e tutela tra Pisa e l’Italia. Edifir, Firenze

    Google Scholar 

  • Giusti MA, Lazzarini MT (1993) La Certosa di Pisa a Calci. Pacini

  • Granda S, Lopez S, Navia F, Ramirez E, Ramirez R, Ramos LF, Mendes N (2019) Diagnosis and structural assessment of the fortress and convent of Ínsua de São Isidro. In: Aguilar R, Torrealva D, Moreira S, Pando MA, Ramos LF (eds) Structural analysis of historical constructions, RILEM, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-99441-3_256

    Chapter  Google Scholar 

  • Greco A, Lombardo G, Pantò B, Famà A (2020) Seismic vulnerability of historical masonry aggregate buildings in Oriental Sicily. Int J Archit Herit 14(4):517–540. https://doi.org/10.1080/15583058.2018.1553075

    Article  Google Scholar 

  • Grillanda N, Valente M, Milani G, Chiozzi A, Tralli A (2020) Advanced numerical strategies for seismic assessment of historical masonry aggregates. Eng Struct 212:110441. https://doi.org/10.1016/j.engstruct.2020.110441

    Article  Google Scholar 

  • Karanikoloudis G, Lourenço PB, Alejo LE, Mendes N (2020) Lessons from structural analysis of a great Gothic Cathedral: Canterbury Cathedral as a case study. Int J Archit Herit 15:1–30

    Google Scholar 

  • Lagomarsino S (2006) On the vulnerability assessment of monumental buildings. Bull Earthq Eng 4:445–463. https://doi.org/10.1007/s10518-006-9025-y

    Article  Google Scholar 

  • Lagomarsino S (2012) Damage assessment of churches after L’Aquila earthquake (2009). Bull Earthq Eng 10(1):73–92

    Article  Google Scholar 

  • Lagomarsino S, Podestà S (2004) Seismic vulnerability of ancient churches: I. Damage assessment and emergency planning. Earthq spectr 20(2):377–394

    Article  Google Scholar 

  • Lagomarsino S, Resemini S (2009) The assessment of damage limitation state in the seismic analysis of monumental buildings. Earthq Spectra 25(2):323–346

    Article  Google Scholar 

  • Lagomarsino S, Penna A, Galasco A, Cattari S (2013) TREMURI program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng Struct 56:1787–1799

    Article  Google Scholar 

  • Lagomarsino S, Cattari S, Degli Abbati S, Ottonelli D (2014) Seismic assessment of complex monumental buildings in aggregate: the case study of Palazzo del Podestà in Mantua (Italy). In: SAHC2014—9th international conference on structural analysis of historical constructions, Mexico City, Mexico, pp 14–17

  • Lourenço PB (2010) Recent advances in masonry modelling: micromodelling and homogenization. In: Galvanetto U (ed) Multiscale modeling in solid mechanics: computational approaches. World Scientific, Singapore, pp 251–294

    Google Scholar 

  • Lourenço PB, Barros J, Oliveira JT (2004) Shear testing of stack bonded masonry. Constr Build Mater 18(2):125–132

    Article  Google Scholar 

  • Lourenço PB, Mendes N, Ramos LF, Oliveira DV (2011) Analysis of Masonry structures without box behavior. Int J Archit Herit 5(4–5):369–382. https://doi.org/10.1080/15583058.2010.528824

    Article  Google Scholar 

  • Maio R, Vicente R, Formisano A, Varum H (2015) Seismic vulnerability of building aggregates through hybrid and indirect assessment techniques. Bull Earthq Eng 13(10):2995–3014. https://doi.org/10.1007/s10518-015-9747-9

    Article  Google Scholar 

  • Manghi A (1911) La Certosa di Pisa. Mariotti, Pisa

    Google Scholar 

  • Mendes N, Lourenço PB (2009) Seismic assessment of Masonry “Gaioleiro” buildings in Lisbon Portugal. J Earthq Eng 14(1):80–101. https://doi.org/10.1080/13632460902977474

    Article  Google Scholar 

  • Mendes N, Lourenço PB (2014) Sensitivity analysis of the seismic performance of existing masonry buildings. Eng Struct 80:137–146

    Article  Google Scholar 

  • Mindlin RD (1951) Influence of rotatory inertia and shear in flexural motions of isotropic elastic plates, ASME. J Appl Mech 18:1031–1036

    Article  Google Scholar 

  • MOC-2008 (2008) Manual de diseno de obras civiles. Diseno de estructuras de edificios. C.F.d.E. Instituo de Investigaciones Eléctricas, Mexico

  • NTC (2018) Norme tecniche per le costruzioni del 17 gennaio 2018. M.d.I.e.d. Trasporti, Roma, Italy

  • NZS3603 (1993) New Zealand Standard: timber structures standard. New Zealand

  • Orlando M, Betti M, Spinelli P (2020) Assessment of structural behaviour and seismic retrofitting for an Italian monumental masonry building. J Build Eng 29:101115

    Article  Google Scholar 

  • Piombanti G (1884) La Certosa di Pisa e dell'isola di Gorgona. Fabbreschi

  • Puncello I, Caprili S (2021) Macroseismic risk classification of historical constructions: the LEXSIS approach. Bull Earthq Eng. https://doi.org/10.1007/s10518-021-01209-7

    Article  Google Scholar 

  • Ramírez R, Mendes N, Lourenço PB (2019) Diagnosis and seismic behavior evaluation of the church of São Miguel de Refojos (Portugal). Buildings 9(6):138

    Article  Google Scholar 

  • Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates, ASME. J Appl Mech 12:69–76

    Article  Google Scholar 

  • ReLUIS (2010) Linee guida per il rilievo, l'analisi ed il progetto di interventi di riparazione e consolidamento sismico di edifici in muratura in aggregato. D.P. Civile

  • Resta C (2019) Valutazione speditiva del tiro nelle catene con misure dinamiche. Pisa University, Master degree

    Google Scholar 

  • Roca P, Lourenc̦o PB, Gaetani A (2019) Historic construction and conservation: materials systems and damage. Routledge

    Book  Google Scholar 

  • Senaldi I, Magenes G, Penna A (2010) Numerical investigations on the seismic response of masonry building aggregates. Adv Mater Res 133:715–720

    Article  Google Scholar 

  • Sevieri G, Galasso C, D'Ayala D, De Jesus R, Oreta A, Grio MEDA, Ibabao R (2020) A multi-hazard risk prioritisation framework for cultural heritage assets. Nat Hazards Earth Syst Sci 20(5):1391–1414

    Article  Google Scholar 

  • Tena-Colunga A, Licona J (2010) Simplified method for the seismic analysis of Masonry Shear-wall buildings. J Struct Eng. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000142

    Article  Google Scholar 

  • Tomaževič M (1978) The computer program POR. Report ZRMK 846

  • Vailati M, Monti G, Realfonzo R, Khazna MJ, De Iuliis M, Valeri G (2015) A simplified approach for the seismic assessment of existing masonry structures using few analyses. In 4th International Workshop on Archeology, Cryptoportici, Hypogea, Geology, Geotechnics, Geophysics

  • Valente M, Milani G, Grande E, Formisano A (2019) Historical masonry building aggregates: advanced numerical insight for an effective seismic assessment on two row housing compounds. Eng Struct 190:360–379. https://doi.org/10.1016/j.engstruct.2019.04.025

    Article  Google Scholar 

  • Valluzzi MR, Munari M, Modena C (2006) Analisi di aggregati complessi per valutazioni di vulnerabilità sismica: il caso di Castelluccio di Norcia. In: Binda L (Ed) Sicurezza e conservazione degli edifici storici in funzione delle tipologie edilizie, della concezione costruttiva e dei materiali (workshop MURST 2004–2006), Milano

  • Vicente R, Parodi S, Lagomarsino S, Varum H, Silva JARM (2011) Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra Portugal. Bull Earthq Eng 9(4):1067–1096. https://doi.org/10.1007/s10518-010-9233-3

    Article  Google Scholar 

  • Vicente R (2008) Strategies and methodologies for urban rehabilitation interventions. The vulnerability assessment and risk evaluation of the old city centre of Coimbra. PhD thesis, University of Aveiro

  • Wilson A, Quenneville PJ, Ingham JM (2013) In-plane orthotropic behavior of timber floor diaphragms in unreinforced masonry buildings. J Struct Eng 140(1):04013038

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Pisa University and to the Superintendence BAPSAE of Pisa and Livorno for supporting and encouraging this research. The authors would like to thank all the research teams who have collaborated in the framework of the project "Studi conoscitivi e ricerche per la conservazione e la valorizzazione del Complesso della Certosa di Calci e dei suoi Poli Museali" promoted by the Pisa University. In particular, the authors’ gratitude goes to Prof. M.G. Bevilacqua and his research team (the ASTRO laboratory) for the execution of the Laser Scanner survey, Prof. A. De Falco and her co-workers for the elaboration of the point clouds in CAD environment, for the experimental tests performed on chains and for the collaboration during the in-situ investigations. A special thank is also given to the expert technicians of the Laboratorio Ufficiale per le Esperienze sui Materiali da Costruzione of Pisa University for the execution of experimental investigations. Finally, the authors’ gratitude goes to Guglielmo Giambartolomei for providing the aerial photo of the Certosa di Calci.

Funding

Partial financial support was received by the Pisa University in the framework of the project "Studi conoscitivi e ricerche per la conservazione e la valorizzazione del Complesso della Certosa di Calci e dei suoi Poli Museali".

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the elaboration of the presented research.

Corresponding author

Correspondence to Irene Puncello.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puncello, I., Caprili, S. & Roca, P. Simplified numerical approach for the structural analysis of monumental historical aggregates: the case study of Certosa di Calci. Bull Earthquake Eng 20, 5269–5300 (2022). https://doi.org/10.1007/s10518-022-01397-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-022-01397-w

Keywords

Navigation