Skip to main content

Advertisement

Log in

Seasonal Variability of Mineral Formation in Microbial Mats Subjected to Drying and Wetting Cycles in Alkaline and Hypersaline Sedimentary Environments

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Interactions of the microbial mat community with the sedimentary environment were evaluated in two shallow, ephemeral lakes with markedly different hydrochemistry and mineralogy. The characterization of growing and decaying microbial mats by light microscopy observations and fluorescence in situ hybridization was complemented with biogeochemical and mineralogical measurements. The lakes studied were Eras and Altillo Chica, both located in Central Spain and representing poly-extreme environments. Lake Eras is a highly alkaline, brackish to saline lake containing a high concentration of chloride, and in which the carbonate concentration exceeds the sulfate concentration. The presence of magnesium is crucial for the precipitation of hydromagnesite in microbialites of this lake. Altillo Chica is a mesosaline to hypersaline playa lake with high concentrations of sulfate and chloride, favoring the formation of gypsum microbialites. Differences in the microbial community composition and mineralogy of the microbialites between the two lakes were primarily controlled by alkalinity and salinity. Lake Eras was dominated by the cyanobacterial genus Oscillatoria, as well as Alphaproteobacteria, Gammaproteobacteria and Firmicutes. When the mat decayed, Alphaproteobacteria and Deltaproteobacteria increased and became the dominant heterotrophs, as opposed to Firmicutes. In contrast, Deltaproteobacteria was the most abundant group in Lake Altillo Chica, where desiccation led to mats decay during evaporite formation. In addition to Deltaproteobacteria, Cyanobacteria, Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were found in Altillo Chica, mostly during microbial mats growth. At both sites, microbial mats favored the precipitation of sulfate and carbonate minerals. The precipitation of carbonate is higher in the soda lake due to a stronger alkalinity engine and probably a higher degradation rate of exopolymeric substances. Our findings clarify the distribution patterns of microbial community composition in ephemeral lakes at the levels of whole communities, which were subjected to environmental conditions similar to those that may have existed during early Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sed Geol 185(3–4):131–145

    Article  Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5(4):401–411

    Article  Google Scholar 

  • Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C, Dupraz C, Visscher PT (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol Ecol 67(2):293–307

    Article  Google Scholar 

  • Cabestrero Ó, Sanz-Montero ME (2018) Brine evolution in two inland evaporative environments: influence of microbial mats in mineral precipitation. J Paleolimnol 59(2):139–157

    Article  Google Scholar 

  • Cabestrero Ó, García del Cura MA, Sanz-Montero ME (2013) Precipitación de sales en una laguna sulfatada magnésico-sódica (Lillo, Toledo): controles ambientales. Macla 17:27–28

    Google Scholar 

  • Cabestrero Ó, Sanz-Montero ME, García del Cura MA (2014a) Precipitation of magnesium bearing-sulphates in saline lakes: influence of sedimentary structures and microbial processes. In: 19th international sedimentological congress 2014, Geneva, Switzerland, pp 18–22

  • Cabestrero Ó, Arroyo-Rey X, García del Cura MA, Sanz-Montero ME (2014b) Formación de arcillas en lagunas sulfatadas efímeras (Lillo, Toledo). Macla 19:1–2

    Google Scholar 

  • Cabestrero Ó, Sanz-Montero ME, Martin D (2015a) The behavior of the calcium ion in saline and alkaline lake complexes revealed by statistical techniques. U.S. Geological Survey Open-File Report 2015, 1092:42–43

  • Cabestrero Ó, Arregui L, Sanz-Montero ME, Serrano S (2015b) Biodiversity of protists and prokaryotes of two playa-lakes from Central Spain. In: Abstract book: VII European Congress of Protistology, Seville, Spain

  • Cabestrero Ó, Del Buey P, Sanz-Montero ME (2018) Biosedimentary and geochemical constraints on the precipitation of mineral crusts in shallow sulphate lakes. Sed Geol 366:32–46

    Article  Google Scholar 

  • Cam N, Benzerara K, Georgelin T, Jaber M, Lambert JF, Poinsot M, Cordier L (2016) Selective uptake of alkaline earth metals by cyanobacteria forming intracellular carbonates. Environ Sci Technol 50(21):11654–11662

    Article  Google Scholar 

  • Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251(5000):1471

    Article  Google Scholar 

  • Cirujano S (1980) Las lagunas manchegas y su vegetación. I. Anales del Jardín Botánico de Madrid 37(1):155–192

    Google Scholar 

  • Cirujano S, García P, Meco A, Fernández R (2007) Los carófitos ibéricos. Anales del Jardín Botánico de Madrid 64:87–102

    Article  Google Scholar 

  • Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22(3):434–444

    Article  Google Scholar 

  • Del Buey P, Cabestrero Ó, Arroyo X, Sanz-Montero ME (2018) Microbially induced Palygorskite-Sepiolite authigenesis in modern hypersaline lakes (Central Spain). Appl Clay Sci. https://doi.org/10.1016/j.clay.2018.02.020

  • Drews G (1981) Rhodospirillum salexigens, spec. nov., an obligatory halophilic phototrophic bacterium. Arch Microbiol 130(4):325–327

    Article  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13(9):429–438

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96(3):141–162

    Article  Google Scholar 

  • Dupraz C, Fowler A, Tobias C, Visscher PT (2013) Stromatolitic knobs in Storr’s Lake (San Salvador, Bahamas): a model system for formation and alteration of laminae. Geobiology 11(6):527–548

    Article  Google Scholar 

  • Farías ME, Contreras M, Rasuk MC, Kurth D, Flores MR, Poiré DG, Visscher PT (2014) Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18(2):311–329

    Article  Google Scholar 

  • Fernandez-Galiano D (1976) Silver impregnation of ciliated protozoa: procedure yielding good results with the pyridinated silver carbonate method. Trans Am Microsc Soc 95(4):557–560

  • Foissner W (1999) Soil protozoa as bioindicators: pros and cons, methods, diversity, representative examples. Agr Ecosyst Environ 74(1–3):95–112

    Article  Google Scholar 

  • Foster IS, King PL, Hyde BC, Southam G (2010) Characterization of halophiles in natural MgSO4 salts and laboratory enrichment samples: astrobiological implications for Mars. Planet Space Sci 58(4):599–615

    Article  Google Scholar 

  • Gallagher KL, Dupraz C, Braissant O, Norman RS, Decho AW, Visscher PT (2010) Mineralization of sedimentary biofilms: modern mechanistic insights. In: WIlliam CB (ed) Biofilms: formation, development and properties. Nova Science Publishers, Inc., New York, pp 227–258

  • Gallagher KL, Kading T, Braissant O, Dupraz C, Visscher PT (2012) Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology 10:518–530

    Article  Google Scholar 

  • Gallagher KL, Dupraz C, Visscher PT (2014) Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments: COMMENT. Geology 42(1):e313–e314

    Article  Google Scholar 

  • Glunk C, Dupraz C, Braissant O, Gallagher KL, Verrecchia EP, Visscher PT (2011) Microbially mediated carbonate precipitation in a hypersaline lake, big pond (Eleuthera, Bahamas). Sedimentology 58(3):720–736

    Article  Google Scholar 

  • Hansen TA, van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86(1):49–56

    Article  Google Scholar 

  • Hunter CN, Daldal F, Thurnauer MC, Beatty JT (2008) The purple phototrophic bacteria. Springer, Amsterdam

    Google Scholar 

  • Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176(4):243–254

    Article  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2(3):191–200

    Article  Google Scholar 

  • Klatt CG, Liu Z, Ludwig M, Kühl M, Jensen SI, Bryant DA, Ward DM (2013) Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME J 7(9):1775–1789

    Article  Google Scholar 

  • Krejci MR, Wasserman B, Finney L, McNulty I, Legnini D, Vogt S, Joester D (2011) Selectivity in biomineralization of barium and strontium. J Struct Biol 176(2):192–202

    Article  Google Scholar 

  • Lefèvre CT, Howse PA, Schmidt ML, Sabaty M, Menguy N, Luther GW III, Bazylinski DA (2016) Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium. Environ Microbiol Rep 8(6):1003–1015

    Article  Google Scholar 

  • Luther GW III, Glazer BT, Hohmann L, Popp JI, Taillefert M, Rozan TF, Brendel PJ, Theberge SM, Nuzzio DB (2001) Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. J Environ Monit 3(1):61–66

    Article  Google Scholar 

  • Madigan MT, Gest H (1979) Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 137(1):524–530

    Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 168(6):311–332

    Article  Google Scholar 

  • McEwan AG (1994) Photosynthetic electron transport and anaerobic metabolism in purple nonsulfur phototrophic bacteria. Antonie Van Leeuwenhoek 66(1):151–164

    Article  Google Scholar 

  • Montoya L, Vizioli C, Rodríguez N, Rastoll MJ, Amils R, Marin I (2013) Microbial community composition of Tirez lagoon (Spain), a highly sulfated athalassohaline environment. Aquat Biosyst 9(1):19

    Article  Google Scholar 

  • Navarro JB, Moser DP, Flores A, Ross C, Rosen MR, Dong H, Hedlund BP (2009) Bacterial succession within an ephemeral hypereutrophic mojave desert Playa Lake. Microb Ecol 57(2):307–320

    Article  Google Scholar 

  • Newman DK, Banfield JF (2002) Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science 296(5570):1071–1077

    Article  Google Scholar 

  • Nübel U, Bateson MM, Madigan MT, Kühl M, Ward DM (2001) Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. Appl Environ Microbiol 67(9):4365–4371

    Article  Google Scholar 

  • Parkhurst DL, Appelo C (1999) User’s guide to PHREEQC (version 2). A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 99(4259)

  • Power IM, Wilson SA, Thom JM, Dipple GM, Southam G (2007) Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochem Trans 8(1):13

    Article  Google Scholar 

  • Rice EW, Bridgewater L, Federation WE, Association APH (2012) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC

  • Rodríguez-Aranda JP, Sanz-Montero ME (2015) Tapices microbianos: los organismos que fabrican estromatolitos. Enseñanza de las Ciencias de la Tierra 23(2):208–219

    Google Scholar 

  • Sanz-Montero ME, Rodríguez-Aranda JP (2013) The role of microbial mats in the movement of stones on playa lake surfaces. Sed Geol 298:53–64

    Article  Google Scholar 

  • Sanz-Montero ME, Calvo JP, Garcia del Cura MA, Ornosa C, Outerelo R, Rodríguez-Aranda JP (2013a) The rise of the diptera-microbial mat interactions during the Cenozoic: consequences for the sedimentary record of saline lakes. Terra Nova 25(6):465–471

    Article  Google Scholar 

  • Sanz-Montero ME, Arroyo X, Cabestrero Ó, Calvo JP, Fernández-Escalante E, Fidalgo C, Rodríguez-Aranda JP (2013b) Procesos de sedimentación y biomineralización en la laguna alcalina de las Eras (Humedal Coca-Olmedo). Geogaceta 53:97–100

    Google Scholar 

  • Sanz-Montero ME, Cabestrero Ó, Rodríguez-Aranda JP (2013c) Hydromagnesite precipitation in microbial mats from a highly alkaline lake, Central Spain. Miner Mag 77–5:2628

    Google Scholar 

  • Sanz‐Montero ME, Cabestrero Ó, Rodríguez‐Aranda JP (2015a) Sedimentary effects of flood‐producing windstorms in playa lakes and their role in the movement of large rocks. Earth Surf Process Landf 40(7):864–875

  • Sanz‐Montero ME, Cabestrero Ó, Rodríguez‐Aranda JP (2015b) Gypsum microbialites and mat-related structures in shallow evaporitic lakes. Geological Survey Open-File Report 2015, 1092:189–190

  • Sanz-Montero ME, Cabestrero Ó, Rodríguez-Aranda JP (2016) Comments on Racetrack playa: rocks moved by wind alone. Aeol Res 20:196–197

    Article  Google Scholar 

  • Schneider D, Arp G, Reimer A, Reitner J, Daniel R (2013) Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati Atoll, Central Pacific. PLoS One 8(6):e66662

    Article  Google Scholar 

  • Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63(7):2884–2896

    Google Scholar 

  • Sorokin DY, Kuenen JG, Muyzer G (2011) The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2:44

    Article  Google Scholar 

  • Sorokin D, Tourova T, Sukhacheva M, Muyzer G (2012) Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes. Extremophiles 16(4):597–605

    Article  Google Scholar 

  • Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeogr Palaeoclimatol Palaeoecol 219(1):87–100

    Article  Google Scholar 

  • Visscher PT, van Gemerden H (1993) Sulfur cycling in laminated marine microbial ecosystems. In: Oremland RTS (ed) Biogeochemistry of global change. Springer, Amsterdam, pp 672–690

  • Visscher PT, Beukema J, van Gemerden H (1991) In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnol Oceanogr 36(7):1476–1480

    Article  Google Scholar 

  • Visscher PT, Prins RA, van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Lett 86(4):283–293

    Article  Google Scholar 

  • Visscher PT, Reid RP, Bebout BM, Hoeft SE, Macintyre IG, Thompson JA (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am Miner 83(11):1482–1493

    Article  Google Scholar 

  • Visscher PT, Dupraz C, Braissant O, Gallagher KL, Glunk C, Casillas L, Reed RE (2010) Biogeochemistry of carbon cycling in hypersaline mats: linking the present to the past through biosignatures. In: Seckbach J, Oren A (eds) Microbial mats. Springer, Amsterdam, pp 443–468

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol 134(4):286–294

    Article  Google Scholar 

  • Wong HL, Smith DL, Visscher PT, Burns BP (2015) Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci Rep 5:15607

    Article  Google Scholar 

  • Yang J, Ma LA, Jiang H, Wu G, Dong H (2016) Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep 6:25078

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been funded by the Spanish Ministry of Economy and Competivity, National Project CGL2015-66455-R (MINECO-FEDER). We wish to thank all the members of Project CGL2015-66455-R for their assistance. We wish to thank Claudia Beimfohr from Vermicon for clarifying the FISH analyses. We appreciate the time and effort of the Editor George Luther and three anonymous referees whose contributions improved this manuscript. This publication is part of the Scientific Activities of Research Group UCM-910404. PTV acknowledges support from NSF-EAR award 1561173. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ó. Cabestrero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabestrero, Ó., Sanz-Montero, M.E., Arregui, L. et al. Seasonal Variability of Mineral Formation in Microbial Mats Subjected to Drying and Wetting Cycles in Alkaline and Hypersaline Sedimentary Environments. Aquat Geochem 24, 79–105 (2018). https://doi.org/10.1007/s10498-018-9333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-018-9333-2

Keywords

Navigation