Skip to main content

Advertisement

Log in

Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia–reperfusion injury

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia–reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Wang R, Shi L, Liu S et al (2019) Mass spectrometry-based urinary metabolomics for the investigation on the mechanism of action of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves against ischemic stroke in rats. J Ethnopharmacol 241:111969. https://doi.org/10.1016/j.jep.2019.111969

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin EJ, Virani SS, Callaway CW et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137:e67–e492. https://doi.org/10.1161/CIR.0000000000000558

    Article  PubMed  Google Scholar 

  3. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257. https://doi.org/10.1038/bjc.1972.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li W, Qu Z, Prakash R et al (2013) Comparative analysis of the neurovascular injury and functional outcomes in experimental stroke models in diabetic Goto-Kakizaki rats. Brain Res 1541:106–114. https://doi.org/10.1016/j.brainres.2013.10.021

    Article  CAS  PubMed  Google Scholar 

  5. Hu GQ, Du X, Li YJ, Gao XQ, Chen BQ, Yu L (2017) Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway. Neural Regen Res 12:96–102. https://doi.org/10.4103/1673-5374.198992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu L, Liu Z, He W et al (2020) Hydroxysafflor yellow A confers neuroprotection from focal cerebral ischemia by modulating the crosstalk between JAK2/STAT3 and SOCS3 signaling pathways. Cell Mol Neurobiol 40:1271–1281. https://doi.org/10.1007/s10571-020-00812-7

    Article  CAS  Google Scholar 

  7. Fisher M, Feuerstein G, Howells DW et al (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40:2244–2250. https://doi.org/10.1161/strokeaha.108.541128

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zheng W, Matei N, Pang J et al (2019) Delayed recanalization at 3 days after permanent MCAO attenuates neuronal apoptosis through FGF21/FGFR1/PI3K/Caspase-3 pathway in rats. Exp Neurol 320:113007. https://doi.org/10.1016/j.expneurol.2019.113007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang X, Zhang XF, Wang L et al (2020) Analysis of clinical efficacy of traditional Chinese medicine in recovery stage of stroke: a systematic review and meta-analysis. Cardiovasc Ther 2020:7172052. https://doi.org/10.1155/2020/7172052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29:347–364. https://doi.org/10.1038/s41422-019-0164-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang WT, Zheng XW, Chen S et al (2017) Chinese herbal medicine for Alzheimer’s disease: clinical evidence and possible mechanism of neurogenesis. Biochem Pharmacol 141:143–155. https://doi.org/10.1016/j.bcp.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  12. Gillies LA, Kuwana T (2014) Apoptosis regulation at the mitochondrial outer membrane. J Cell Biochem 115:632–640. https://doi.org/10.1002/jcb.24709

    Article  CAS  PubMed  Google Scholar 

  13. Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Iorio R, Celenza G, Petricca S (2022) Mitophagy: molecular mechanisms, new concepts on Parkin activation and the emerging role of AMPK/ULK1 axis. Cells 11:25. https://doi.org/10.3390/cells11010030

    Article  CAS  Google Scholar 

  15. Galluzzi L, Bravo-San Pedro JM, Vitale I et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73. https://doi.org/10.1038/cdd.2014.137

    Article  CAS  PubMed  Google Scholar 

  16. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247. https://doi.org/10.1152/physrev.00039.2006

    Article  CAS  PubMed  Google Scholar 

  17. Uren RT, Dewson G, Bonzon C, Lithgow T, Newmeyer DD, Kluck RM (2005) Mitochondrial release of pro-apoptotic proteins: electrostatic interactions can hold cytochrome c but not Smac/DIABLO to mitochondrial membranes. J Biol Chem 280:2266–2274. https://doi.org/10.1074/jbc.M411106200

    Article  CAS  PubMed  Google Scholar 

  18. Vianello A, Casolo V, Petrussa E et al (2012) The mitochondrial permeability transition pore (PTP)—an example of multiple molecular exaptation? BBA-Bioenergetics 1817:2072–2086. https://doi.org/10.1016/j.bbabio.2012.06.620

    Article  CAS  PubMed  Google Scholar 

  19. Hou Y, Qieni XM, Li N et al (2020) Longzhibu disease and its therapeutic effects by traditional Tibetan medicine: Ershi-wei Chenxiang pills. J Ethnopharmacol 249:13. https://doi.org/10.1016/j.jep.2019.112426

    Article  CAS  Google Scholar 

  20. Jiang H, Fang J, Xing J et al (2019) Tilianin mediates neuroprotection against ischemic injury by attenuating CaMKII-dependent mitochondrion-mediated apoptosis and MAPK/NF-κB signaling. Life Sci 216:233–245. https://doi.org/10.1016/j.lfs.2018.11.035

    Article  CAS  PubMed  Google Scholar 

  21. Lan R, Zhang Y, Xiang J et al (2014) Xiao-Xu-Ming decoction preserves mitochondrial integrity and reduces apoptosis after focal cerebral ischemia and reperfusion via the mitochondrial p53 pathway. J Ethnopharmacol 151:307–316. https://doi.org/10.1016/j.jep.2013.10.042

    Article  PubMed  Google Scholar 

  22. Kharat M, Du ZY, Zhang GD, McClements DJ (2017) Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. J Agric Food Chem 65:1525–1532. https://doi.org/10.1021/acs.jafc.6b04815

    Article  CAS  PubMed  Google Scholar 

  23. He RY, Jiang YB, Shi YJ, Liang J, Zhao L (2020) Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. Mater Sci Eng C 117:12. https://doi.org/10.1016/j.msec.2020.111314

    Article  CAS  Google Scholar 

  24. Huang P, Wu SP, Wang N, Seto S, Chang DN (2021) Hydroxysafflor yellow A alleviates cerebral ischemia reperfusion injury by suppressing apoptosis via mitochondrial permeability transition pore. Phytomedicine 85:11. https://doi.org/10.1016/j.phymed.2021.153532

    Article  CAS  Google Scholar 

  25. Jing SQ, Wang SS, Zhong RM et al (2020) Neuroprotection of Cyperus esculentus L. orientin against cerebral ischemia/reperfusion induced brain injury. Neural Regen Res 15:548–556. https://doi.org/10.4103/1673-5374.266063

    Article  CAS  PubMed  Google Scholar 

  26. Fu C, Zhang XY, Zeng ZX et al (2020) Neuroprotective effects of Qingnao dripping pills against cerebral ischemia via inhibiting nlrp3 inflammasome signaling pathway: in vivo and in vitro. Front Pharmacol 11:13. https://doi.org/10.3389/fphar.2020.00065

    Article  CAS  Google Scholar 

  27. Liang QL, Yang J, He JJ et al (2020) Stigmasterol alleviates cerebral ischemia/reperfusion injury by attenuating inflammation and improving antioxidant defenses in rats. Biosci Rep 40:12. https://doi.org/10.1042/bsr20192133

    Article  CAS  Google Scholar 

  28. Abdel-Rahman RF, El Awdan SA, Hegazy RR, Mansour DF, Ogaly HA, Abdelbaset M (2020) Neuroprotective effect of Crocus sativus against cerebral ischemia in rats. Metab Brain Dis 35:427–439. https://doi.org/10.1007/s11011-019-00505-1

    Article  CAS  PubMed  Google Scholar 

  29. Zhang JF (2021) The improving effect of Danshensu on cerebral microcirculation disorder and neuron damage after ischemia-reperfusion. Acta Medica Mediterranea 37:3251–3256. https://doi.org/10.19193/0393-6384_2021_6_511

    Article  Google Scholar 

  30. Liu Z, Gao WW, Xu YQ (2022) Eleutheroside E alleviates cerebral ischemia-reperfusion injury in a 5-hydroxytryptamine receptor 2C (Htr2c)-dependent manner in rats. Bioengineered 13:11718–11731. https://doi.org/10.1080/21655979.2022.2071009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. French LE, Tschopp J (2003) Protein-based therapeutic approaches targeting death receptors. Cell Death Differ 10:117–123. https://doi.org/10.1038/sj.cdd.4401185

    Article  CAS  PubMed  Google Scholar 

  32. El Hady Abd, Mousa M, Mansour H, Eid F, Mashaal A (2021) Anti-inflammatory activity of ginger modulates macrophage activation against the inflammatory pathway of monosodium glutamate. J Food Biochem 45(8):e13819. https://doi.org/10.1111/jfbc.13819

    Article  CAS  Google Scholar 

  33. Kim MJ, Vargas MR, Harlan BA et al (2018) Nitration and glycation turn mature NGF into a toxic factor for motor neurons: a role for p75(NTR) and RAGE signaling in ALS. Antioxid Redox Signal 28:1587–1602. https://doi.org/10.1089/ars.2016.6966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liepinsh E, Ilag LL, Otting G, Ibanez CF (1997) NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J 16:4999–5005. https://doi.org/10.1093/emboj/16.16.4999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2:420–430. https://doi.org/10.1038/nrc821

    Article  CAS  PubMed  Google Scholar 

  36. Kuo MH, Lee HF, Tu YF, Lin LH, Cheng YY, Lee HT (2019) Astaxanthin ameliorates ischemic-hypoxic-induced neurotrophin receptor p75 upregulation in the endothelial cells of neonatal mouse brains. Int J Mol Sci 20:17. https://doi.org/10.3390/ijms20246168

    Article  CAS  Google Scholar 

  37. Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256:42–49. https://doi.org/10.1006/excr.2000.4838

    Article  CAS  PubMed  Google Scholar 

  38. Tatsuta T, Shiraishi A, Mountz JD (2000) The prodomain of caspase-1 enhances Fas-mediated apoptosis through facilitation of caspase-8 activation. J Biol Chem 275:14248–14254. https://doi.org/10.1074/jbc.275.19.14248

    Article  CAS  PubMed  Google Scholar 

  39. Becher B, Barker PA, Owens T, Antel JP (1998) CD95-CD95L: can the brain learn from the immune system? Trends Neurosci 21:114–117. https://doi.org/10.1016/s0166-2236(97)01180-6

    Article  CAS  PubMed  Google Scholar 

  40. Medema JP, Scaffidi C, Kischkel FC et al (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 16:2794–2804. https://doi.org/10.1093/emboj/16.10.2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yin F, Zhou HF, Fang YC et al (2020) Astragaloside IV alleviates ischemia reperfusion-induced apoptosis by inhibiting the activation of key factors in death receptor pathway and mitochondrial pathway. J Ethnopharmacol 248:8. https://doi.org/10.1016/j.jep.2019.112319

    Article  CAS  Google Scholar 

  42. Chen X, Cubillos-Ruiz JR (2021) Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer 21:71–88. https://doi.org/10.1038/s41568-020-00312-2

    Article  CAS  PubMed  Google Scholar 

  43. Fernandez A, Ordonez R, Reiter RJ, Gonzalez-Gallego J, Mauriz JL (2015) Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 59:292–307. https://doi.org/10.1111/jpi.12264

    Article  CAS  PubMed  Google Scholar 

  44. Ren J, Bi YG, Sowers JR, Hetz C, Zhang YM (2021) Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 18:499–521. https://doi.org/10.1038/s41569-021-00511-w

    Article  PubMed  Google Scholar 

  45. Cao SS (2015) Endoplasmic reticulum stress and unfolded protein response in inflammatory bowel disease. Inflamm Bowel Dis 21:636–644. https://doi.org/10.1097/mib.0000000000000238

    Article  PubMed  Google Scholar 

  46. Gorman AM, Healy SJM, Jager R, Samali A (2012) Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther 134:306–316. https://doi.org/10.1016/j.pharmthera.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  47. Mo ZT, Liao YL, Zheng J, Li WN (2020) Icariin protects neurons from endoplasmic reticulum stress-induced apoptosis after OGD/R injury via suppressing IRE1α-XBP1 signaling pathway. Life Sci 255:117847. https://doi.org/10.1016/j.lfs.2020.117847

    Article  CAS  PubMed  Google Scholar 

  48. Pan B, Sun J, Liu ZY et al (2021) Longxuetongluo capsule protects against cerebral ischemia/reperfusion injury through endoplasmic reticulum stress and MAPK-mediated mechanisms. J Adv Res 33:215–225. https://doi.org/10.1016/j.jare.2021.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakka VP, Prakash-babu P, Vemuganti R (2016) Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: potential therapeutic targets for acute CNS injuries. Mol Neurobiol 53:532–544. https://doi.org/10.1007/s12035-014-9029-6

    Article  CAS  PubMed  Google Scholar 

  50. Harding HP, Zhang YH, Bertolotti A, Zeng HQ, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904. https://doi.org/10.1016/s1097-2765(00)80330-5

    Article  CAS  PubMed  Google Scholar 

  51. Wu F, Zhang RM, Feng QZ, Cheng HJ, Xue JJ, Chen J (2020) (-)-Clausenamide alleviated ER stress and apoptosis induced by OGD/R in primary neuron cultures. Neurol Res 42:730–738. https://doi.org/10.1080/01616412.2020.1771040

    Article  CAS  PubMed  Google Scholar 

  52. Wang MH, Chen ZL, Yang L, Ding L (2021) Sappanone A protects against inflammation, oxidative stress and apoptosis in cerebral ischemia-reperfusion injury by alleviating endoplasmic reticulum stress. Inflammation 44:934–945. https://doi.org/10.1007/s10753-020-01388-6

    Article  CAS  PubMed  Google Scholar 

  53. Zhao YM, Fang YL, Zhao HP et al (2018) Chrysophanol inhibits endoplasmic reticulum stress in cerebral ischemia and reperfusion mice. Eur J Pharmacol 818:1–9. https://doi.org/10.1016/j.ejphar.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  54. Xu DD, Kong TT, Cheng BH et al (2021) Orexin-A alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress-mediated apoptosis. Mol Med Rep 23:9. https://doi.org/10.3892/mmr.2021.11905

    Article  CAS  PubMed  Google Scholar 

  55. Wang K, Lou YL, Xu H, Zhong XM, Huang Z (2020) Harpagide from Scrophularia protects rat cortical neurons from oxygen-glucose deprivation and reoxygenation-induced injury by decreasing endoplasmic reticulum stress. J Ethnopharmacol 253:10. https://doi.org/10.1016/j.jep.2020.112614

    Article  CAS  Google Scholar 

  56. Fu K, Chen LQ, Hu S, Guo Y, Zhang W, Bai YN (2021) Grape seed proanthocyanidins attenuate apoptosis in ischemic stroke. Acta Neurol Belg 121:357–364. https://doi.org/10.1007/s13760-019-01111-9

    Article  PubMed  Google Scholar 

  57. Xie P, Ren ZK, Lv J, Hu YM, Guan ZZ, Yu WF (2020) Berberine ameliorates oxygen-glucose deprivation/reperfusion-induced apoptosis by inhibiting endoplasmic reticulum stress and autophagy in PC12 cells. Curr Med Sci 40:1047–1056. https://doi.org/10.1007/s11596-020-2286-x

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Meng L, Li B et al (2021) Isoginkgetin attenuates endoplasmic reticulum stress-induced autophagy of brain after ischemic reperfusion injury. Bioengineered. https://doi.org/10.1080/21655979.2021.1997564

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bai Y, He Z, Duan W et al (2022) Sodium formononetin-3′-sulphonate alleviates cerebral ischemia-reperfusion injury in rats via suppressing endoplasmic reticulum stress-mediated apoptosis. BMC Neurosci 23:74. https://doi.org/10.1186/s12868-022-00762-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu Y, Fan X, Chen S et al (2023) Geraniol-mediated suppression of endoplasmic reticulum stress protects against cerebral ischemia-reperfusion injury via the PERK-ATF4-CHOP pathway. Int J Mol Sci 24:544. https://doi.org/10.3390/ijms24010544

    Article  CAS  Google Scholar 

  61. Chen Y, Chen Z, Cheng W et al (2022) The role of the GRP78/PERK/ATF4 pathway in the ability of Gua Lou Gui Zhi decoction to attenuate apoptosis by inhibiting endoplasmic reticulum stress after ischemia-reperfusion injury. Front Biosci 27:296. https://doi.org/10.31083/j.fbl2710296

    Article  CAS  Google Scholar 

  62. Wang Y, Tu L, Li Y, Chen D, Wang S (2016) Notoginsenoside R1 protects against neonatal cerebral hypoxic-ischemic injury through estrogen receptor-dependent activation of endoplasmic reticulum stress pathways. J Pharmacol Exp Ther 357:591–605. https://doi.org/10.1124/jpet.115.230359

    Article  CAS  PubMed  Google Scholar 

  63. Du WL, Huang JB, Yao HL, Zhou KC, Duan B, Wang YZ (2010) Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J Clin Invest 120:3480–3492. https://doi.org/10.1172/jci43165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu SP, Piao XX, Wang N, Zhai Y (2020) Naoluo Xintong capsule ameliorates apoptosis induced by endoplasmic reticulum stress in rats with cerebral ischemia/reperfusion injury. Ann Palliative Med 9:2913–2925. https://doi.org/10.21037/apm-20-387

    Article  Google Scholar 

  65. Liu DS, Gu YT, Wang WT, Chen WD (2020) Astragalin alleviates ischemia/reperfusion-induced brain injury via suppression of endoplasmic reticulum stress. Mol Med Rep 22:4070–4078. https://doi.org/10.3892/mmr.2020.11448

    Article  CAS  PubMed  Google Scholar 

  66. Li X, Cheng Z, Chen X, Yang D, Li H, Deng Y (2022) Purpurogallin improves neurological functions of cerebral ischemia and reperfusion mice by inhibiting endoplasmic reticulum stress and neuroinflammation. Int Immunopharmacol 111:109057. https://doi.org/10.1016/j.intimp.2022.109057

    Article  CAS  PubMed  Google Scholar 

  67. Wang L, Zhang Z, Wang HB (2021) Naringin attenuates cerebral ischemia-reperfusion injury in rats by inhibiting endoplasmic reticulum stress. Transl Neurosci 12:190–197. https://doi.org/10.1515/tnsci-2020-0170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang M, Li ZX, Chen J, Chen L, Li YY (2022) Extracts of Bauhinia Championii alleviate acute neuronal injury after ischemic reperfusion by improving endoplasmic reticulum stress-mediated neuronal apoptosis. Curr Med Sci 42:483–490. https://doi.org/10.1007/s11596-022-2525-4

    Article  CAS  PubMed  Google Scholar 

  69. Kaufman RJ, Malhotra JD (2014) Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. BBA-Mol Cell Res 1843:2233–2239. https://doi.org/10.1016/j.bbamcr.2014.03.022

    Article  CAS  Google Scholar 

  70. Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol-Heart and Circ Physiol 301:H1723–H1741. https://doi.org/10.1152/ajpheart.00553.2011

    Article  CAS  Google Scholar 

  71. Xin JH, Ma XX, Chen WY et al (2021) Regulation of blood-brain barrier permeability by Salvinorin A via alleviating endoplasmic reticulum stress in brain endothelial cell after ischemia stroke. Neurochem Int 149:8. https://doi.org/10.1016/j.neuint.2021.105093

    Article  CAS  Google Scholar 

  72. Wang K, Wang T, Xu H, Zhong XM, Huang Z (2021) Harpagide exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress via SERCA following oxygen-glucose deprivation/reoxygenation injury. Neurosci Lett 753:7. https://doi.org/10.1016/j.neulet.2021.135874

    Article  CAS  Google Scholar 

  73. Chen YY, Zhang L, Gong XY et al (2020) Iridoid glycosides from Radix Scrophulariae attenuates focal cerebral ischemia-reperfusion injury via inhibiting endoplasmic reticulum stress-mediated neuronal apoptosis in rats. Mol Med Rep 21:131–140. https://doi.org/10.3892/mmr.2019.10833

    Article  CAS  PubMed  Google Scholar 

  74. Guo MM, Qu SBA, Lu HL et al (2021) Biochanin A alleviates cerebral ischemia/reperfusion injury by suppressing endoplasmic reticulum stress-induced apoptosis and p38MAPK signaling pathway in vivo and in vitro. Front Endocrinol 12:11. https://doi.org/10.3389/fendo.2021.646720

    Article  Google Scholar 

  75. Zhao LN, Li HM, Gao Q et al (2021) Berberine attenuates cerebral ischemia-reperfusion injury induced neuronal apoptosis by down-regulating the CNPY2 signaling pathway. Front Pharmacol 12:12. https://doi.org/10.3389/fphar.2021.609693

    Article  CAS  Google Scholar 

  76. Thorpe LM, Yuzugullu H, Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15:7–24. https://doi.org/10.1038/nrc3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sheng SJ, Qiao M, Pardee AB (2009) Metastasis and AKT activation. J Cell Physiol 218:451–454. https://doi.org/10.1002/jcp.21616

    Article  CAS  PubMed  Google Scholar 

  78. Song MQ, Bode AM, Dong ZG, Lee MH (2019) AKT as a therapeutic target for cancer. Cancer Res 79:1019–1031. https://doi.org/10.1158/0008-5472.Can-18-2738

    Article  CAS  PubMed  Google Scholar 

  79. Fan Y, Li YK, Yang YK et al (2022) Chlorogenic acid promotes angiogenesis and attenuates apoptosis following cerebral ischaemia-reperfusion injury by regulating the PI3K-Akt signalling. Pharm Biol 60:1646–1655. https://doi.org/10.1080/13880209.2022.2110599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Feng C, Wan HF, Zhang YY et al (2020) Neuroprotective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway. Front Pharmacol 11:13. https://doi.org/10.3389/fphar.2020.00298

    Article  CAS  Google Scholar 

  81. Yan CL, An FY, Wang JY et al (2022) Zhongfeng capsules protects against cerebral ischemia-reperfusion injury via mediating the phosphoinositide 3-kinase/Akt and toll-like receptor 4/nuclear factor kappa B signaling pathways by regulating neuronal apoptosis and inflammation. Apoptosis 27:561–576. https://doi.org/10.1007/s10495-022-01739-8

    Article  CAS  PubMed  Google Scholar 

  82. Zhang W, Zhang L, Wang WJ et al (2022) Network pharmacology and in vitro experimental verification to explore the mechanism of Sanhua decoction in the treatment of ischaemic stroke. Pharm Biol 60:119–130. https://doi.org/10.1080/13880209.2021.2019281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xian M, Cai J, Zheng K et al (2021) Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway. Food Funct 12:8056–8067. https://doi.org/10.1039/d1fo01144h

    Article  CAS  PubMed  Google Scholar 

  84. Meng JN, Ma HX, Zhu YF, Zhao QP (2021) Dehydrocostuslactone attenuated oxygen and glucose deprivation/reperfusion-induced PC12 cell injury through inhibition of apoptosis and autophagy by activating the PI3K/AKT/mTOR pathway. Eur J Pharmacol 911:14. https://doi.org/10.1016/j.ejphar.2021.174554

    Article  CAS  Google Scholar 

  85. Xie W, Wulin H, Shao G et al (2020) Polygalasaponin F inhibits neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation through the PI3K/Akt pathway. Basic Clin Pharm Toxicol 127:196–204. https://doi.org/10.1111/bcpt.13408

    Article  CAS  Google Scholar 

  86. Pang YQ, Zhu SZ, Pei HT (2020) Pachymic acid protects against cerebral ischemia/reperfusion injury by the PI3K/Akt signaling pathway. Metab Brain Dis 35:673–680. https://doi.org/10.1007/s11011-020-00540-3

    Article  CAS  PubMed  Google Scholar 

  87. Wu L, Jiang C, Kang Y, Dai YJ, Fang W, Huang P (2020) Curcumin exerts protective effects against hypoxia-reoxygenation injury via the enhancement of apurinic/apyrimidinic endonuclease 1 in SH-SY5Y cells: Involvement of the PI3K/AKT pathway. Int J Mol Med 45:993–1004. https://doi.org/10.3892/ijmm.2020.4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang HY, Song YM, Feng C (2020) Improvement of cerebral ischemia/reperfusion injury by daucosterol palmitate-induced neuronal apoptosis inhibition via PI3K/Akt/mTOR signaling pathway. Metab Brain Dis 35:1035–1044. https://doi.org/10.1007/s11011-020-00575-6

    Article  CAS  PubMed  Google Scholar 

  89. Wu Q, Mao ZG, Liu J, Huang JL, Wang N (2020) Ligustilide attenuates ischemia reperfusion-induced hippocampal neuronal apoptosis via activating the PI3K/Akt pathway. Front Pharmacol 11:10. https://doi.org/10.3389/fphar.2020.00979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tian ZH, Tang CY, Wang ZG (2019) Neuroprotective effect of ginkgetin in experimental cerebral ischemia/reperfusion via apoptosis inhibition and PI3K/Akt/mTOR signaling pathway activation. J Cell Biochem 120:18487–18495. https://doi.org/10.1002/jcb.29169

    Article  CAS  PubMed  Google Scholar 

  91. Cai H, Huang LY, Hong R et al (2022) Momordica charantia exosome-like nanoparticles exert neuroprotective effects against ischemic brain injury via inhibiting matrix metalloproteinase 9 and activating the AKT/GSK3β signaling pathway. Front Pharmacol 13:908830. https://doi.org/10.3389/fphar.2022.908830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Si H, Zhang Y, Song Y, Li L (2018) Overexpression of adrenomedullin protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis via the Akt/GSK3β and Bcl-2 signaling pathways. Int J Mol Med 41:3342–3352. https://doi.org/10.3892/ijmm.2018.3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Qin ZS, Zheng Y, Zhou XD et al (2021) Shexiang Baoxin Pill, a proprietary multi-constituent chinese medicine, prevents locomotor and cognitive impairment caused by brain ischemia and reperfusion injury in rats: a potential therapy for neuropsychiatric sequelae of stroke. Front Pharmacol 12:11. https://doi.org/10.3389/fphar.2021.665456

    Article  CAS  Google Scholar 

  94. Wang PC, Wang SX, Yan XL et al (2022) Combination of paeoniflorin and calycosin-7-glucoside alleviates ischaemic stroke injury via the PI3K/AKT signalling pathway. Pharm Biol 60:1469–1477. https://doi.org/10.1080/13880209.2022.2102656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin B, Kim H, Choi JI, Bae HB, Jeong S (2020) Avenanthramide C prevents neuronal apoptosis via PI3K/Akt/GSK3β signaling pathway following middle cerebral artery occlusion. Brain Sci 10:878. https://doi.org/10.3390/brainsci10110878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Abdel-Aleem GA, Khaleel EF, Mostafa DG, Elberier LK (2016) Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch Physiol Biochem 122:200–213. https://doi.org/10.1080/13813455.2016.1182190

    Article  CAS  PubMed  Google Scholar 

  97. Cai H, Huang L-Y, Hong R et al (2022) Momordica charantia exosome-like nanoparticles exert neuroprotective effects against ischemic brain injury via inhibiting matrix metalloproteinase 9 and activating the AKT/GSK3 beta signaling pathway. Front Pharmacol. https://doi.org/10.3389/fphar.2022.908830

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang W, Liu X, Li Q (2018) Protective effects of oleuropein against cerebral ischemia/reperfusion by inhibiting neuronal apoptosis. Med Sci Monit 24:6587–6598. https://doi.org/10.12659/msm.912336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li Y, Wang R, Xue L, Yang YL, Zhi F (2020) Astilbin protects against cerebral ischaemia/reperfusion injury by inhibiting cellular apoptosis and ROS-NLRP3 inflammasome axis activation. Int Immunopharmacol 84:9. https://doi.org/10.1016/j.intimp.2020.106571

    Article  CAS  Google Scholar 

  100. Liu Y, Qu XN, Yan MJ, Li DL, Zou R (2022) Tricin attenuates cerebral ischemia/reperfusion injury through inhibiting nerve cell autophagy, apoptosis and inflammation by regulating the PI3K/Akt pathway. Hum Exp Toxicol 41:10. https://doi.org/10.1177/09603271221125928

    Article  CAS  Google Scholar 

  101. Cho SY, Song CH, Lee JE, Choi SH, Ku SK, Park SJ (2018) Effects of platycodin D on reflux esophagitis due to modulation of antioxidant defense systems. Evid Based Complement Alternat Med 2018:11. https://doi.org/10.1155/2018/7918034

    Article  Google Scholar 

  102. Wang GF, Guo HX, Wang XF (2019) Platycodin D protects cortical neurons against oxygen-glucose deprivation/reperfusion in neonatal hypoxic-ischemic encephalopathy. J Cell Biochem 120:14028–14034. https://doi.org/10.1002/jcb.28677

    Article  CAS  PubMed  Google Scholar 

  103. Zhang J, Jiang YY, Liu N et al (2019) A network-based method for mechanistic investigation and neuroprotective effect on post-treatment of senkyunolid-H against cerebral ischemic stroke in mouse. Front Neurol 10:14. https://doi.org/10.3389/fneur.2019.01299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang ZW, Han YF, Tian SJ, Bao JQ, Wang YH, Jiao JP (2020) Lupeol alleviates cerebral lschemia-reperfusion injury in correlation with modulation of PI3K/Akt pathway. Neuropsychiatr Dis Treat 16:1381–1390. https://doi.org/10.2147/ndt.S237406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jiao S, Zhu H, He P, Teng J (2016) Betulinic acid protects against cerebral ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway. Biomed Pharmacother 84:1533–1537. https://doi.org/10.1016/j.biopha.2016.11.028

    Article  CAS  PubMed  Google Scholar 

  106. Hou S, Zhao M-M, Shen P-P, Liu X-P, Sun Y, Feng J-C (2016) Neuroprotective effect of salvianolic acids against cerebral ischemia/reperfusion injury. Int J Mol Sci. https://doi.org/10.3390/ijms17071190

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhou J, Du T, Li BM, Rong Y, Verkhratsky A, Peng L (2015) Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion. ASN Neuro 7:16. https://doi.org/10.1177/1759091415602463

    Article  CAS  Google Scholar 

  108. Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. BBA-Mol Cell Res 1813:1619–1633. https://doi.org/10.1016/j.bbamcr.2010.12.012

    Article  CAS  Google Scholar 

  109. Tsai YT, Huang HC, Kao ST, Chang TT, Cheng CY (2022) Neuroprotective effects of Alpinia oxyphylla Miq against mitochondria-related apoptosis by the interactions between upregulated p38 MAPK signaling and downregulated JNK signaling in the subacute phase of cerebral ischemia-reperfusion in rats. Am J Chin Med. https://doi.org/10.1142/s0192415x22500884

    Article  PubMed  Google Scholar 

  110. Cao Y, Zhang L, Sun S, Yi Z, Jiang X, Jia D (2016) Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells. Int J Mol Med 38:567–573. https://doi.org/10.3892/ijmm.2016.2623

    Article  CAS  PubMed  Google Scholar 

  111. Li F, Mao Q, Wang J et al (2022) Salidroside inhibited cerebral ischemia/reperfusion-induced oxidative stress and apoptosis via Nrf2/Trx1 signaling pathway. Metab Brain Dis 37:2965–2978. https://doi.org/10.1007/s11011-022-01061-x

    Article  CAS  PubMed  Google Scholar 

  112. Wang H, Zhang B, Dong W, Li Y, Zhao L, Zhang Y (2022) Effect of diammonium glycyrrhizinate in improving focal cerebral ischemia-reperfusion injury in rats through multiple mechanisms. Dose-Response 20:15593258221142792–15593258221142792. https://doi.org/10.1177/15593258221142792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu J, Li Y, Mei CL et al (2020) Phytic acid exerts protective effects in cerebral ischemia-reperfusion injury by activating the anti-oxidative protein sestrin2. Biosci Biotechnol Biochem 84:1401–1408. https://doi.org/10.1080/09168451.2020.1754158

    Article  CAS  PubMed  Google Scholar 

  114. Cheng CY, Kao ST, Lee YC (2020) Angelica sinensis extract protects against ischemia-reperfusion injury in the hippocampus by activating p38 MAPK-mediated p90RSK/p-Bad and p90RSK/CREB/BDNF signaling after transient global cerebral ischemia in rats. J Ethnopharmacol 252:14. https://doi.org/10.1016/j.jep.2020.112612

    Article  CAS  Google Scholar 

  115. Wang C, Yang YH, Zhou L, Ding XL, Meng YC, Han K (2020) Curcumin alleviates OGD/R-induced PC12 cell damage via repressing CCL3 and inactivating TLR4/MyD88/MAPK/NF-κB to suppress inflammation and apoptosis. J Pharm Pharmacol 72:1176–1185. https://doi.org/10.1111/jphp.13293

    Article  CAS  PubMed  Google Scholar 

  116. Zhang ZY, Xu CF, Hao JH et al (2020) Beneficial consequences of Lupeol on middle cerebral artery-induced cerebral ischemia in the rat involves Nrf2 and P38 MAPK modulation. Metab Brain Dis 35:841–848. https://doi.org/10.1007/s11011-020-00565-8

    Article  CAS  PubMed  Google Scholar 

  117. Yang SL, Wang HG, Yang YL et al (2019) Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage. Biomed Pharmacother 117:12. https://doi.org/10.1016/j.biopha.2019.109102

    Article  CAS  Google Scholar 

  118. Xie W, Zhu T, Dong X et al (2019) HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways. Biomolecules 9:512. https://doi.org/10.3390/biom9100512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cheng C-Y, Ho T-Y, Hsiang C-Y et al (2017) Angelica sinensis exerts angiogenic and anti-apoptotic effects against cerebral ischemia-reperfusion injury by activating p38MAPK/HIF-1 alpha/VEGF-a signaling in rats. Am J Chin Med 45:1683–1708. https://doi.org/10.1142/s0192415x17500914

    Article  PubMed  Google Scholar 

  120. Zhu H, Ren D, Xiao L et al (2019) Anthocyanin attenuates oxygen-glucose deprivation/reperfusion-induced apoptosis of PC12 cells via inactivation of ASK1/JNK/p38 signaling pathway. Trop J Pharm Res 18:2037–2043. https://doi.org/10.4314/tjpr.v18i10.6

    Article  CAS  Google Scholar 

  121. Yang D, Yang RG, Shen JY, Huang L, Men S, Wang TC (2022) Sinensetin attenuates oxygen-glucose deprivation/reperfusion-induced neurotoxicity by MAPK pathway in human cerebral microvascular endothelial cells. J Appl Toxicol 42:683–693. https://doi.org/10.1002/jat.4250

    Article  CAS  PubMed  Google Scholar 

  122. Coffey ET (2014) Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15:285–299. https://doi.org/10.1038/nrn3729

    Article  CAS  PubMed  Google Scholar 

  123. Li S, Li J, Zhao Z et al (2022) Delavatine A attenuates OGD/R-caused PC12 cell injury and apoptosis through suppressing the MKK7/JNK signaling pathway. Biol Pharm Bull advpub. https://doi.org/10.1248/bpb.b22-00382

    Article  Google Scholar 

  124. Wu CT, Chen MC, Liu SH et al (2021) Bioactive Flavonoids Icaritin and Icariin protect against cerebral ischemia-reperfusion-associated apoptosis and extracellular matrix accumulation in an ischemic stroke mouse model. Biomedicines 9:13. https://doi.org/10.3390/biomedicines9111719

    Article  CAS  Google Scholar 

  125. Yao H, Zhao J, Song X (2022) Protective effects of fraxin on cerebral ischemia-reperfusion injury by mediating neuroinflammation and oxidative stress through PPAR-γ/NF-κB pathway. Brain Res Bull 187:49–62. https://doi.org/10.1016/j.brainresbull.2022.06.010

    Article  CAS  PubMed  Google Scholar 

  126. Zhao HY, Zheng TZ, Yang XH et al (2019) Cryptotanshinone attenuates oxygen-glucose deprivation/recovery-induced injury in an in vitro model of neurovascular unit. Front Neurol 10:11. https://doi.org/10.3389/fneur.2019.00381

    Article  Google Scholar 

  127. Yu HL, Song LL, Cao X et al (2020) Hederagenin attenuates cerebral ischaemia/reperfusion injury by regulating MLK3 signalling. Front Pharmacol 11:13. https://doi.org/10.3389/fphar.2020.01173

    Article  CAS  Google Scholar 

  128. Yuan ML, Zhang Y, Wang L et al (2022) Study on the mechanism of Tong-Qiao-Huo-Xue decoction regulating apoptosis via ASK1/MKK4/JNK pathway in MCAO/R rats. Phytomedicine 106:11. https://doi.org/10.1016/j.phymed.2022.154437

    Article  CAS  Google Scholar 

  129. Yu HL, Li W, Cao X et al (2019) Echinocystic acid, a natural plant extract, alleviates cerebral ischemia/reperfusion injury via inhibiting the JNK signaling pathway. Eur J Pharmacol 861:10. https://doi.org/10.1016/j.ejphar.2019.172610

    Article  CAS  Google Scholar 

  130. Wang CY, Wan HZ, Li M, Zhang CX (2021) Celastrol attenuates ischemia/reperfusion-mediated memory dysfunction by downregulating AK005401/MAP3K12. Phytomedicine 82:12. https://doi.org/10.1016/j.phymed.2020.153441

    Article  CAS  Google Scholar 

  131. Zhong M, Ma W, Zhang X, Wang Y, Gao X (2016) Tetramethyl pyrazine protects hippocampal neurons against anoxia/reoxygenation injury through inhibiting apoptosis mediated by JNK/MARK signal pathway. Med Sci Monit 22:5082–5090. https://doi.org/10.12659/msm.898921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu W, Wang XH, O’Connor M, Wang G, Han F (2020) Brain-derived neurotrophic factor and its potential therapeutic role in stroke comorbidities. Neural Plast 2020:13. https://doi.org/10.1155/2020/1969482

    Article  CAS  Google Scholar 

  133. Li CX, Sui CL, Wang W et al (2021) Baicalin attenuates oxygen-glucose deprivation/reoxygenation-induced injury by modulating the BDNF-TrkB/PI3K/Akt and MAPK/Erk1/2 signaling axes in neuron-astrocyte cocultures. Front Pharmacol 12:14. https://doi.org/10.3389/fphar.2021.599543

    Article  CAS  Google Scholar 

  134. Li Y, Xiang LL, Wang C, Song YG, Miao JX, Miao MS (2021) Protection against acute cerebral ischemia/reperfusion injury by Leonuri Herba total alkali via modulation of BDNF-TrKB-PI3K/Akt signaling pathway in rats. Biomed Pharmacother 133:14. https://doi.org/10.1016/j.biopha.2020.111021

    Article  CAS  Google Scholar 

  135. Peng TM, Li S, Liu LL et al (2022) Artemisinin attenuated ischemic stroke induced cell apoptosis through activation of ERK1/2/CREB/BCL-2 signaling pathway in vitro and in vivo. Int J Biol Sci 18:4578–4594. https://doi.org/10.7150/ijbs.69892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen Y, Zhang LX, Yang ZT, Yu J (2022) Curcumin inhibits cerebral ischaemia-reperfusion injury and cell apoptosis in rats through the ERK-CHOP-caspase-11 pathway. Pharm Biol 60:854–861. https://doi.org/10.1080/13880209.2022.2069271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yu ZH, Cai M, Li XT et al (2018) Neuroprotective effects of Tongxinluo on focal cerebral ischemia and reperfusion injury in rats associated with the activation of the MEK1/2/ERK1/2/p90RSK signaling pathway. Brain Res 1685:9–18. https://doi.org/10.1016/j.brainres.2018.01.036

    Article  CAS  PubMed  Google Scholar 

  138. Zhao R, Zhao K, Su H, Zhang P, Zhao N (2019) Resveratrol ameliorates brain injury via the TGF-β-mediated ERK signaling pathway in a rat model of cerebral hemorrhage. Exp Ther Med 18:3397–3404. https://doi.org/10.3892/etm.2019.7939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Leung SW, Lai JH, Wu JCC et al (2020) Neuroprotective effects of Emodin against ischemia/reperfusion injury through activating ERK-1/2 signaling pathway. Int J Mol Sci 21:13. https://doi.org/10.3390/ijms21082899

    Article  CAS  Google Scholar 

  140. Jeong SH, Kim HK, Song IS et al (2014) Echinochrome A protects mitochondrial function in cardiomyocytes against cardiotoxic drugs. Mar Drugs 12:2922–2936. https://doi.org/10.3390/md12052922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim R, Hur D, Kim HK et al (2019) Echinochrome A attenuates cerebral ischemic injury through regulation of cell survival after middle cerebral artery occlusion in rat. Mar Drugs 17:8. https://doi.org/10.3390/md17090501

    Article  CAS  Google Scholar 

  142. Zhao J, Zhao XY, Tian JB et al (2020) Theanine attenuates hippocampus damage of rat cerebral ischemia-reperfusion injury by inhibiting HO-1 expression and activating ERK1/2 pathway. Life Sci 241:8. https://doi.org/10.1016/j.lfs.2019.117160

    Article  CAS  Google Scholar 

  143. You S, Wang Y, Guo Y et al (2023) Activation of the ERK1/2 pathway mediates the neuroprotective effect provided by calycosin treatment. Neurosci Lett 792:136956. https://doi.org/10.1016/j.neulet.2022.136956

    Article  CAS  PubMed  Google Scholar 

  144. Cheng CY, Lin JG, Su SY, Tang NY, Kao ST, Hsieh CL (2014) Electroacupuncture-like stimulation at Baihui and Dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemia in rats. BMC Complement Altern Med 14:92. https://doi.org/10.1186/1472-6882-14-92

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zuo HY, Lin T, Wang DW et al (2015) RKIP regulates neural cell apoptosis induced by exposure to microwave radiation partly through the MEK/ERK/CREB pathway. Mol Neurobiol 51:1520–1529. https://doi.org/10.1007/s12035-014-8831-5

    Article  CAS  PubMed  Google Scholar 

  146. Xu L, Ding L, Su YQ, Shao RY, Liu J, Huang Y (2019) Neuroprotective effects of curcumin against rats with focal cerebral ischemia-reperfusion injury. Int J Mol Med 43:1879–1887. https://doi.org/10.3892/ijmm.2019.4094

    Article  CAS  PubMed  Google Scholar 

  147. Han MY, Hu L, Chen Y (2019) Rutaecarpine may improve neuronal injury, inhibits apoptosis, inflammation and oxidative stress by regulating the expression of ERK 1/2 and Nrf2/HO-1 pathway in rats with cerebral ischemia-reperfusion injury. Drug Des Dev Ther 13:2923–2931. https://doi.org/10.2147/dddt.S216156

    Article  CAS  Google Scholar 

  148. Dziennis S, Jia TP, Ronnekleiv OK, Hurn PD, Alkayed NJ (2007) Role of signal transducer and activator of transcription-3 in estradiol-mediated neuroprotection. J Neurosci 27:7268–7274. https://doi.org/10.1523/jneurosci.1558-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hou YY, Wang K, Wan WJ, Cheng Y, Pu X, Ye XF (2018) Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis 5:245–255. https://doi.org/10.1016/j.gendis.2018.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Xu ZH, Liu W, Huang H (2020) Astragaloside IV alleviates cerebral ischemia-reperfusion injury by activating the Janus kinase 2 and signal transducer and activator of transcription 3 signaling pathway. Pharmacology 105:181–189. https://doi.org/10.1159/000503361

    Article  CAS  PubMed  Google Scholar 

  151. Wei S, Tong J, Xue Q, Liu Y, Xu X (2017) Effect of puerarin on transcriptome of astrocyte during oxygen-glucose deprivation/reoxygenation injury. Mol Cell Biochem 425:113–123. https://doi.org/10.1007/s11010-016-2867-y

    Article  CAS  PubMed  Google Scholar 

  152. Lu J, Wang J, Yu L et al (2022) Shaoyao-Gancao decoction promoted microglia M2 polarization via the IL-13-mediated JAK2/STAT6 pathway to alleviate cerebral ischemia-reperfusion injury. Mediat Inflamm. https://doi.org/10.1155/2022/1707122

    Article  Google Scholar 

  153. Yuan YJ, Xia F, Gao R et al (2022) Kaempferol mediated AMPK/mTOR signal pathway has a protective effect on cerebral ischemic-reperfusion injury in rats by inducing autophagy. Neurochem Res 47:2187–2197. https://doi.org/10.1007/s11064-022-03604-1

    Article  CAS  PubMed  Google Scholar 

  154. Gao JB, Wang HJ, Li YJ, Li WD (2019) Resveratrol attenuates cerebral ischaemia reperfusion injury via modulating mitochondrial dynamics homeostasis and activating AMPK-Mfn1 pathway. Int J Exp Pathol 100:337–349. https://doi.org/10.1111/iep.12336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang L, Wu M, Chen Z (2022) Schaftoside improves cerebral ischemia-reperfusion injury by enhancing autophagy and reducing apoptosis and inflammation through the AMPK/mTOR pathway. Adv Clin Exp Med. https://doi.org/10.17219/acem/152207

    Article  PubMed  Google Scholar 

  156. Yang Y, Gao H, Liu W et al (2021) Arctium lappa L. roots ameliorates cerebral ischemia through inhibiting neuronal apoptosis and suppressing AMPK/mTOR-mediated autophagy. Phytomedicine 85:153526. https://doi.org/10.1016/j.phymed.2021.153526

    Article  CAS  PubMed  Google Scholar 

  157. Wu Q, Liu J, Mao Z et al (2022) Ligustilide attenuates ischemic stroke injury by promoting Drp1-mediated mitochondrial fission via activation of AMPK. Phytomedicine 95:153884. https://doi.org/10.1016/j.phymed.2021.153884

    Article  CAS  PubMed  Google Scholar 

  158. Xing XS, Liu F, He ZY (2015) Akt regulates β-catenin in a rat model of focal cerebral ischemia-reperfusion injury. Mol Med Rep 11:3122–3128. https://doi.org/10.3892/mmr.2014.3000

    Article  CAS  PubMed  Google Scholar 

  159. Zhou JX, Wu NS, Lin LY (2020) Curcumin suppresses apoptosis and inflammation in hypoxia/reperfusion-exposed neurons via Wnt signaling pathway. Med Sci Monit 26:7. https://doi.org/10.12659/msm.920445

    Article  CAS  Google Scholar 

  160. Xu D, Hou K, Li F, Chen S, Fang W, Li Y (2019) XQ-1H alleviates cerebral ischemia in mice through inhibition of apoptosis and promotion of neurogenesis in a Wnt/β-catenin signaling dependent way. Life Sci 235:116844. https://doi.org/10.1016/j.lfs.2019.116844

    Article  CAS  PubMed  Google Scholar 

  161. Huang Q, Qi J, Gao Z et al (2022) Chemical composition and protective effect of cerebrospinal fluid of Dan-Deng-Tong-Nao capsules on brain microvascular endothelial cells injured by OGD/R. J Ethnopharmacol 283:114705. https://doi.org/10.1016/j.jep.2021.114705

    Article  CAS  PubMed  Google Scholar 

  162. Reichrath J, Reichrath S (2021) Notch signaling in prevention and therapy: fighting cancer with a two-sided sword. Adv Exp Med Biol 1287:1–7. https://doi.org/10.1007/978-3-030-55031-8_1

    Article  CAS  PubMed  Google Scholar 

  163. Cheng YL, Park JS, Manzanero S et al (2014) Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis 62:286–295. https://doi.org/10.1016/j.nbd.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  164. Jin Z, Guo PP, Li XY, Ke JJ, Wang YL, Wu HS (2019) Neuroprotective effects of irisin against cerebral ischemia/ reperfusion injury via Notch signaling pathway. Biomed Pharmacother 120:9. https://doi.org/10.1016/j.biopha.2019.109452

    Article  CAS  Google Scholar 

  165. An BZ, Ma Y, Xu YL et al (2020) Crocin regulates the proliferation and migration of neural stem cells after cerebral ischemia by activating the Notch1 pathway. Folia Neuropathol 58:201–212. https://doi.org/10.5114/fn.2020.100063

    Article  PubMed  Google Scholar 

  166. Yang Y, He B, Zhang XC et al (2022) Geraniin protects against cerebral ischemia/reperfusion injury by suppressing oxidative stress and neuronal apoptosis via regulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev 2022:13. https://doi.org/10.1155/2022/2152746

    Article  CAS  Google Scholar 

  167. Dai Y, Zhang H, Zhang J, Yan M (2018) Isoquercetin attenuates oxidative stress and neuronal apoptosis after ischemia/reperfusion injury via Nrf2-mediated inhibition of the NOX4/ROS/NF-κB pathway. Chem Biol Interact 284:32–40. https://doi.org/10.1016/j.cbi.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  168. He J, Zhou D, Yan B (2020) Eriocitrin alleviates oxidative stress and inflammatory response in cerebral ischemia reperfusion rats by regulating phosphorylation levels of Nrf2/NQO-1/HO-1/NF-κB p65 proteins. Ann Transl Med 8:757. https://doi.org/10.21037/atm-20-4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang J, Mao JQ, Wang R, Li SN, Wu B, Yuan YF (2020) Kaempferol protects against cerebral ischemia reperfusion injury through intervening oxidative and inflammatory stress induced apoptosis. Front Pharmacol 11:12. https://doi.org/10.3389/fphar.2020.00424

    Article  CAS  Google Scholar 

  170. Yao H, Liu Y, Zhu G, Duan Y, Wu H, Li Y (2019) Protective effects of hederagenic acid on PC12 cells against the OGD/R-induced apoptosis via activating Nrf2/ARE signaling pathway. Med Chem Res 29:103–112. https://doi.org/10.1007/s00044-019-02464-9

    Article  CAS  Google Scholar 

  171. He Y, Jiang KF, Zhao X (2020) Taraxasterol protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activation of Nrf2 signalling pathway. Artif Cells Nanomed Biotechnol 48:252–258. https://doi.org/10.1080/21691401.2019.1699831

    Article  CAS  PubMed  Google Scholar 

  172. Li Y, Zhang JJ, Chen RJ et al (2022) Genistein mitigates oxidative stress and inflammation by regulating Nrf2/HO-1 and NF-κB signaling pathways in hypoxic-ischemic brain damage in neonatal mice. Ann Transl Med 10:32. https://doi.org/10.21037/atm-21-4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang R, Wei Y, Deng W, Teng J (2022) Pratensein mitigates oxidative stress and NLRP3 inflammasome activation in OGD/R-injured HT22 cells by activating Nrf2-anti-oxidant signaling. Neurotox Res 40:384–394. https://doi.org/10.1007/s12640-022-00472-z

    Article  CAS  PubMed  Google Scholar 

  174. Qin H, Fu Y, Jiang Y et al (2022) Total flavonoids in Premna fulva Craib alleviates brain neurological impairment and influences Nrf2 and HO-1 expressions in rats with ischemia-reperfusion. Cell Mol Biol 68:155–160. https://doi.org/10.14715/cmb/2022.68.6.25

    Article  PubMed  Google Scholar 

  175. Min S, Jianqiang W, Fangfang B, Zhangyong B (2022) Diosmetin alleviates cerebral ischemia-reperfusion injury through Keap1-mediated Nrf2/ARE signaling pathway activation and NLRP3 inflammasome inhibition. Environ Toxicol 37:1529–1542. https://doi.org/10.1002/tox.23504

    Article  CAS  Google Scholar 

  176. Yang Y, He B, Zhang X et al (2022) Geraniin protects against cerebral ischemia/reperfusion injury by suppressing oxidative stress and neuronal apoptosis via regulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev. https://doi.org/10.1155/2022/2152746

    Article  PubMed  PubMed Central  Google Scholar 

  177. Zhai Y, Liu B, Wu L, Zou M, Mei X, Mo X (2022) Pachymic acid prevents neuronal cell damage induced by hypoxia/reoxygenation via miR-155/NRF2/HO-1 axis. Acta Neurobiol Exp 82:197–206. https://doi.org/10.55782/ane-2022-018

    Article  Google Scholar 

  178. Zhang Z, Pang X, Wei Y, Chen H, Jin X, Lv Q (2022) Neuroprotective effects of Chrysanthemum morifolium on cerebral ischemia- reperfusion injury contributes to the oxidative stress suppression and related Keap1/Nrf2 pathway. Brain Inj. https://doi.org/10.1080/02699052.2022.2158225

    Article  PubMed  PubMed Central  Google Scholar 

  179. Zhu F, Xiong J, Yi F, Luo E, Huang C, Li R (2022) Albiflorin relieves cerebral ischemia-reperfusion injury by activating Nrf2/HO-1 pathway. Histol Histopathol. https://doi.org/10.14670/hh-18-518

    Article  PubMed  Google Scholar 

  180. Cai M, Guo Y, Wang S et al (2017) Tanshinone IIA elicits neuroprotective effect through activating the nuclear factor erythroid 2-related factor-dependent antioxidant response. Rejuvenation Res 20:286–297. https://doi.org/10.1089/rej.2016.1912

    Article  CAS  PubMed  Google Scholar 

  181. Pan J, Li X, Guo F, Yang Z, Zhang L, Yang C (2019) Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci Rep. https://doi.org/10.1042/bsr20191452

  182. Gao YH, Li R, Sun H et al (2019) Protective effects of Oroxylin A on oxygen-glucose deprivation/reperfusion-induced PC12 cells by activating the sonic Hedgehog signal pathway. Nat Prod Commun 14:7. https://doi.org/10.1177/1934578x19881544

    Article  CAS  Google Scholar 

  183. Wu P, Yan XS, Zhou LL et al (2019) Involvement of apoptosis in the protective effects of Dracocephalum moldavaica in cerebral ischemia reperfusion rat model. J Toxicol Environ Health-Part A 82:1036–1044. https://doi.org/10.1080/15287394.2019.1684707

    Article  CAS  Google Scholar 

  184. Nan LH, Xie QQ, Chen ZM et al (2020) Involvement of PARP-1/AIF signaling pathway in protective effects of Gualou Guizhi decoction against ischemia-reperfusion injury-induced apoptosis. Neurochem Res 45:278–294. https://doi.org/10.1007/s11064-019-02912-3

    Article  CAS  PubMed  Google Scholar 

  185. Zhang W, Song J, Li W et al (2020) Salvianolic acid D alleviates cerebral ischemia-reperfusion injury by suppressing the cytoplasmic translocation and release of HMGB1-triggered NF-κB activation to inhibit inflammatory response. Mediators Inflamm 2020:9049614. https://doi.org/10.1155/2020/9049614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang JK, Guo Q, Zhang XW et al (2020) Aglaia odorata Lour. extract inhibit ischemic neuronal injury potentially via suppressing p53/Puma-mediated mitochondrial apoptosis pathway. J Ethnopharmacol 248:112336. https://doi.org/10.1016/j.jep.2019.112336

    Article  CAS  PubMed  Google Scholar 

  187. Zhao YL, Xu JF (2020) Sanggenon C ameliorates cerebral ischemia-reperfusion injury by inhibiting inflammation and oxidative stress through regulating RhoA-ROCK signaling. Inflammation 43:1476–1487. https://doi.org/10.1007/s10753-020-01225-w

    Article  CAS  PubMed  Google Scholar 

  188. Cao W, Feng SJ, Kan MC (2021) Naringin targets NFKB1 to alleviate oxygen-glucose deprivation/reoxygenation-induced injury in PC12 cells via modulating HIF-1α/AKT/mTOR-signaling pathway. J Mol Neurosci 71:101–111. https://doi.org/10.1007/s12031-020-01630-8

    Article  CAS  PubMed  Google Scholar 

  189. Zhang C, Chen S, Zhang Z et al (2020) Asiaticoside alleviates cerebral ischemia-reperfusion injury via NOD2/mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway. Med Sci Monit 26:e920325. https://doi.org/10.12659/msm.920325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ji H, Jin H, Li G et al (2022) Artemisinin protects against cerebral ischemia and reperfusion injury via inhibiting the NF-kappa B pathway. Open Med 17:871–881. https://doi.org/10.1515/med-2022-0435

    Article  CAS  Google Scholar 

  191. Bai S, Hu Z, Yang Y et al (2016) Anti-inflammatory and neuroprotective effects of triptolide via the NF-kappa B signaling pathway in a Rat MCAO model. Anatomical Record-Adv Integr Anatomy Evolut Biol 299:256–266. https://doi.org/10.1002/ar.23293

    Article  CAS  Google Scholar 

  192. Yao H, Zhao J, Song X (2022) Protective effects of fraxin on cerebral ischemia-reperfusion injury by mediating neuroinflammation and oxidative stress through PPAR-?/NF-?B pathway. Brain Res Bull 187:49–62. https://doi.org/10.1016/j.brainresbull.2022.06.010

    Article  CAS  PubMed  Google Scholar 

  193. Li Q, Zhang H, Liu X (2022) Didymin alleviates cerebral ischemia-reperfusion injury by activating the PPAR signaling pathway. Yonsei Med J 63:956–965. https://doi.org/10.3349/ymj.2022.0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gao Y, Hu M, Niu X et al (2022) Dl-3-n-butylphthalide improves neuroinflammation in mice with repeated cerebral ischemia-reperfusion injury through the Nrf2-mediated antioxidant response and TLR4/MyD88/NF-kappa B signaling pathway. Oxid Med Cell Longev. https://doi.org/10.1155/2022/8652741

    Article  PubMed  PubMed Central  Google Scholar 

  195. Fan X, Elkin K, Shi Y et al (2020) Schisandrin B improves cerebral ischemia and reduces reperfusion injury in rats through TLR4/NF-κB signaling pathway inhibition. Neurol Res 42:693–702. https://doi.org/10.1080/01616412.2020.1782079

    Article  CAS  PubMed  Google Scholar 

  196. Deng Z, Li J, Tang X et al (2022) Leonurine reduces oxidative stress and provides neuroprotection against ischemic injury via modulating oxidative and NO/NOS pathway. Int J Mol Sci 23:10188. https://doi.org/10.3390/ijms231710188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Li H, Wang Y, Wang B et al (2021) Baicalin and geniposide inhibit polarization and inflammatory injury of OGD/R-treated microglia by suppressing the 5-LOX/LTB4 pathway. Neurochem Res 46:1844–1858. https://doi.org/10.1007/s11064-021-03305-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Huang D, Qin J, Lu N et al (2022) Neuroprotective effects of nobiletin on cerebral ischemia/reperfusion injury rats by inhibiting Rho/ROCK signaling pathway. Ann Transl Med 10:1385–1385. https://doi.org/10.21037/atm-22-6119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ni H, Li J, Zheng J, Zhou B (2022) Cardamonin attenuates cerebral ischemia/reperfusion injury by activating the HIF-1 alpha/VEGFA pathway. Phytother Res 36:1736–1747. https://doi.org/10.1002/ptr.7409

    Article  CAS  PubMed  Google Scholar 

  200. Song X, Xing W, Zhang X et al (2023) Exploring the synergic mechanism of Ligusticum striatum DC. and borneol in attenuating BMECs injury and maintaining tight junctions against cerebral ischaemia based on the HIF-1?/VEGF signalling pathway. J Ethnopharmacol 301:115764. https://doi.org/10.1016/j.jep.2022.115764

    Article  CAS  PubMed  Google Scholar 

  201. Li P-P, He L, Zhang L-M, Qin X-M, Hu J-P (2022) Naoluo Xintong decoction ameliorates cerebral ischemia-reperfusion injury by promoting angiogenesis through activating the HIF-1 alpha/VEGF signaling pathway in rats. Evid Based Complement Alternat Med. https://doi.org/10.1155/2022/9341466

    Article  PubMed  PubMed Central  Google Scholar 

  202. Zhang Y, Zhang Y, Jin XF et al (2019) The role of astragaloside IV against cerebral ischemia/reperfusion injury: suppression of apoptosis via promotion of P62-LC3-autophagy. Molecules 24:17. https://doi.org/10.3390/molecules24091838

    Article  CAS  Google Scholar 

  203. Chen X-J, Zhang J-G, Wu L (2018) Plumbagin inhibits neuronal apoptosis, intimal hyperplasia and also suppresses TNF-alpha/NF-kappa B pathway induced inflammation and matrix metalloproteinase-2/9 expression in rat cerebral ischemia. Saudi J Biol Sci 25:1033–1039. https://doi.org/10.1016/j.sjbs.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  204. Chen C-M, Wu C-T, Yang T-H, Chang Y-A, Sheu M-L, Liu SH (2016) Green tea catechin prevents hypoxia/reperfusion-evoked oxidative stress-regulated autophagy-activated apoptosis and cell death in microglial cells. J Agric Food Chem 64:4078–4085. https://doi.org/10.1021/acs.jafc.6b01513

    Article  CAS  PubMed  Google Scholar 

  205. Shi Y, Liu Q, Chen W et al (2023) Protection of Taohong Siwu Decoction on PC12 cells injured by oxygen glucose deprivation/reperfusion via mitophagy-NLRP3 inflammasome pathway in vitro. J Ethnopharmacol 301:115784. https://doi.org/10.1016/j.jep.2022.115784

    Article  CAS  PubMed  Google Scholar 

  206. Wang M, Li Y-J, Ding Y et al (2016) Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 53:932–943. https://doi.org/10.1007/s12035-014-9062-5

    Article  CAS  PubMed  Google Scholar 

  207. Li L, Song J-j, Zhang M-x et al (2022) Oridonin ameliorates caspase-9-mediated brain neuronal apoptosis in mouse with ischemic stroke by inhibiting RIPK3-mediated mitophagy. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-022-00995-3

    Article  PubMed  PubMed Central  Google Scholar 

  208. Ding L, Ye H, Gu L-d, Du A-q, Yuan X-l (2022) Echinacoside alleviates cognitive impairment in cerebral ischemia rats through alpha 7nAChR-induced autophagy. Chin J Integr Med 28:809–816. https://doi.org/10.1007/s11655-022-2893-4

    Article  CAS  PubMed  Google Scholar 

  209. Pi WX, Feng XP, Ye LH, Cai BC (2017) Combination of morroniside and diosgenin prevents high glucose-induced cardiomyocytes apoptosis. Molecules 22:11. https://doi.org/10.3390/molecules22010163

    Article  CAS  Google Scholar 

  210. Zeng GY, Ding WJ, Li Y, Sun MY, Deng LY (2018) Morroniside protects against cerebral ischemia/reperfusion injury by inhibiting neuron apoptosis and MMP2/9 expression. Exp Ther Med 16:2229–2234. https://doi.org/10.3892/etm.2018.6457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Jiang Y, Sun HM, Yin ZQ, Yan J (2020) Tea polysaccharide (TPS) reduces astrocytes apoptosis induced by oxygen-glucose deprivation/reoxygenation by regulating the miR-375/SRXN1 axis. Adv Polym Technol 2020:9. https://doi.org/10.1155/2020/1308081

    Article  CAS  Google Scholar 

  212. Liu C, Gu J, Yu Y (2023) Celastrol assuages oxygen-glucose deprivation and reoxygenation-induced damage in human brain microvascular endothelial cells through the circDLGAP4/miR-6085/GDF11 pathway. Metab Brain Dis 38:255–267. https://doi.org/10.1007/s11011-022-01106-1

    Article  CAS  PubMed  Google Scholar 

  213. Hu Z-Y, Yang Z-B, Zhang R, Luo X-J, Peng J (2023) The protective effect of vitexin compound B-1 on rat cerebral I/R injury through a mechanism involving modulation of miR-92b/NOX4 pathway. CNS Neurol Disord Drug Targets 22:137–147. https://doi.org/10.2174/1871527321666220324115848

    Article  CAS  PubMed  Google Scholar 

  214. Li L, Zhang DW, Yao W et al (2022) Ligustrazine exerts neuroprotective effects via circ_0008146/miR-709/Cx3cr1 axis to inhibit cell apoptosis and inflammation after cerebral ischemia/reperfusion injury. Brain Res Bull 190:244–255. https://doi.org/10.1016/j.brainresbull.2022.10.011

    Article  CAS  PubMed  Google Scholar 

  215. Gu S (2021) Oleanolic acid improved inflammatory response and apoptosis of PC12 cells induced by OGD/R through downregulating miR-142-5P. Nat Prod Commun 16:7. https://doi.org/10.1177/1934578x211018019

    Article  CAS  Google Scholar 

  216. Roshan-Milani S, Sattari P, Ghaderi-Pakdel F, Naderi R (2022) miR-23b/TAB3/NF-κB/p53 axis is involved in hippocampus injury induced by cerebral ischemia-reperfusion in rats: the protective effect of chlorogenic acid. BioFactors 48:908–917. https://doi.org/10.1002/biof.1830

    Article  CAS  PubMed  Google Scholar 

  217. An L, Zhu D, Zhang X, Huang J, Lu G (2022) Isoastilbin inhibits neuronal apoptosis and oxidative stress in a rat model of ischemia-reperfusion injury in the brain: Involvement of SIRT1/3/6. Adv Clin Exp Med 31:49–57. https://doi.org/10.17219/acem/142164

    Article  PubMed  Google Scholar 

  218. Luo Y, Chen H, Tsoi B, Wang Q, Shen J (2021) Danggui-Shaoyao-San (DSS) ameliorates cerebral ischemia-reperfusion injury via activating SIRT1 signaling and inhibiting NADPH oxidases. Front Pharmacol 12:653795. https://doi.org/10.3389/fphar.2021.653795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hu C, Zhang S, Chen Q, Wang R (2022) Ovatodiolide protects ischemia-reperfusion-induced neuronal injury via microglial neuroinflammation via mediating SIRT1/NF-Kappa B pathway. Brain Res Bull 180:97–107. https://doi.org/10.1016/j.brainresbull.2021.12.010

    Article  CAS  PubMed  Google Scholar 

  220. Wang P, Cao Y, Yu J et al (2016) Baicalin alleviates ischemia-induced memory impairment by inhibiting the phosphorylation of CaMKII in hippocampus. Brain Res 1642:95–103. https://doi.org/10.1016/j.brainres.2016.03.019

    Article  CAS  PubMed  Google Scholar 

  221. Ko C-H, Huang C-P, Lin Y-W, Hsieh C-L (2018) Paeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats. Iranian J Basic Med Sci 21:1174–1178. https://doi.org/10.22038/ijbms.2018.30371.7322

    Article  Google Scholar 

  222. Li K, Ding D, Zhang M (2016) Neuroprotection of Osthole against cerebral ischemia/reperfusion injury through an anti-apoptotic pathway in rats. Biol Pharm Bull 39:336–342. https://doi.org/10.1248/bpb.b15-00699

    Article  CAS  PubMed  Google Scholar 

  223. Wang Q, Dai P, Bao H et al (2017) Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats. Exp Ther Med 13:263–268. https://doi.org/10.3892/etm.2016.3947

    Article  CAS  PubMed  Google Scholar 

  224. Chen T, Ma Z, Zhu L et al (2016) Suppressing receptor-interacting protein 140: a new sight for salidroside to treat cerebral ischemia. Mol Neurobiol 53:6240–6250. https://doi.org/10.1007/s12035-015-9521-7

    Article  CAS  PubMed  Google Scholar 

  225. Huang W, Wang L, Zou Y et al (2022) Preparation of gastrodin-modified dendrimer-entrapped gold nanoparticles as a drug delivery system for cerebral ischemia-reperfusion injury. Brain Behav 12:2810. https://doi.org/10.1002/brb3.2810

    Article  CAS  Google Scholar 

  226. Li Q, Qu M, Wang N, Wang L, Fan G, Yang C (2022) Betaine protects rats against ischemia/reperfusion injury-induced brain damage. J Neurophysiol 127:444–451. https://doi.org/10.1152/jn.00400.2021

    Article  CAS  PubMed  Google Scholar 

  227. Yang L, Tao Y, Luo L, Zhang Y, Wang X, Meng X (2022) Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. J Ethnopharmacol 288:114988. https://doi.org/10.1016/j.jep.2022.114988

    Article  CAS  PubMed  Google Scholar 

  228. Liu H, Dai Q, Yang J, Zhang Y, Zhang B, Zhong L (2021) Zuogui pill attenuates neuroinflammation and improves cognitive function in cerebral ischemia reperfusion-injured rats. NeuroImmunomodulation. https://doi.org/10.1159/000519010

    Article  PubMed  Google Scholar 

  229. Wasan H, Singh D, Joshi B et al (2022) Dihydromyricetin alleviates cerebral ischemia-reperfusion injury by attenuating apoptosis and astrogliosis in peri-infarct cortex. Neurol Res 44:403–414. https://doi.org/10.1080/01616412.2021.1997010

    Article  CAS  PubMed  Google Scholar 

  230. Wu C-T, Yang T-H, Chen M-C, Guan S-S, Chen C-M, Liu S-H (2022) Therapeutic effect of icaritin on cerebral ischemia-reperfusion-induced senescence and apoptosis in an acute ischemic stroke mouse model. Molecules 27:5783. https://doi.org/10.3390/molecules27185783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Lin B, Chen R, Wang Q, Li Z, Yang S, Feng Y (2021) Transcriptomic and metabolomic profiling reveals the protective effect of Acanthopanax senticosus (Rupr. & Maxim.) harms combined with Gastrodia elata blume on cerebral ischemia-reperfusion injury. Front Pharmacol 12:619076. https://doi.org/10.3389/fphar.2021.619076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Liu Y, Fu N, Su J, Wang X, Li X (2019) Rapid enkephalin delivery using exosomes to promote neurons recovery in ischemic stroke by inhibiting neuronal p53/caspase-3. Biomed Res Int 2019:4273290. https://doi.org/10.1155/2019/4273290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Mihara M, Erster S, Zaika A et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590. https://doi.org/10.1016/s1097-2765(03)00050-9

    Article  CAS  PubMed  Google Scholar 

  234. Lapresa R, Agulla J, Sanchez-Moran I et al (2019) Amyloid-ss promotes neurotoxicity by Cdk5-induced p53 stabilization. Neuropharmacology 146:19–27. https://doi.org/10.1016/j.neuropharm.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  235. Ko YU, Kim C, Lee J et al (2019) Site-specific phosphorylation of Fbxw7 by Cdk5/p25 and its resulting decreased stability are linked to glutamate-induced excitotoxicity. Cell Death Dis 10:579. https://doi.org/10.1038/s41419-019-1818-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Chien M-Y, Chuang C-H, Chern C-M et al (2016) Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice. Free Radic Biol Med 99:508–519. https://doi.org/10.1016/j.freeradbiomed.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  237. Guo H, Kong S, Chen W et al (2014) Apigenin mediated protection of OGD-evoked neuron-like injury in differentiated PC12 cells. Neurochem Res 39:2197–2210. https://doi.org/10.1007/s11064-014-1421-0

    Article  CAS  PubMed  Google Scholar 

  238. Yu B, Ruan M, Liang T et al (2017) Tetramethylpyrazine phosphate and borneol combination therapy synergistically attenuated ischemia-reperfusion injury of the hypothalamus and striatum via regulation of apoptosis and autophagy in a rat model. Am J Transl Res 9:4807–4820

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Yu B, Yao Y, Zhang XF, Xu HQ, Lu JF, Ruan M (2020) Synergic effect of Ligusticum chuanxiong hort extract and borneol in protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reperfusion injury. Int J Pharmacol 16:447–459. https://doi.org/10.3923/ijp.2020.447.459

    Article  CAS  Google Scholar 

  240. Li M, Li SC, Dou BK et al (2020) Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia. Acta Pharmacol Sin 41:1025–1032. https://doi.org/10.1038/s41401-020-0386-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Cao S, Chen S, Qiao X et al (2022) Protocatechualdehyde rescues oxygen-glucose deprivation/reoxygenation-induced endothelial cells injury by inducing autophagy and inhibiting apoptosis via regulation of SIRT1. Front Pharmacol 13:846513. https://doi.org/10.3389/fphar.2022.846513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Li FZ, Gong XY, Yang BB (2021) Geranylgeranylacetone ameliorated ischemia/reperfusion induced-blood brain barrier breakdown through HSP70-dependent anti-apoptosis effect. Am J Transl Res 13:102–114

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Ravagnan L, Gurbuxani S, Susin SA et al (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843. https://doi.org/10.1038/ncb0901-839

    Article  CAS  PubMed  Google Scholar 

  244. Zhang XF, Wang YT, Chen M, Zeng M (2021) Hexavalent chromium-induced apoptosis in Hep3B cells is accompanied by calcium overload, mitochondrial and AIF translocation. Ecotoxicol Environ Saf 208:10. https://doi.org/10.1016/j.ecoenv.2020.111391

    Article  Google Scholar 

  245. Yu SW, Wang YF, Frydenlund DS, Ottersen OP, Dawson VL, Dawson TM (2009) Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release. ASN Neuro 1:7. https://doi.org/10.1042/an20090046

    Article  Google Scholar 

  246. Matsumori Y, Hong SM, Aoyama K et al (2005) Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25:899–910. https://doi.org/10.1038/sj.jcbfm.9600080

    Article  CAS  PubMed  Google Scholar 

  247. Zeng ML, Zhou HF, He Y et al (2021) Danhong injection alleviates cerebral ischemia/reperfusion injury by improving intracellular energy metabolism coupling in the ischemic penumbra. Biomed Pharmacother 140:10. https://doi.org/10.1016/j.biopha.2021.111771

    Article  CAS  Google Scholar 

  248. Sheng R, Zhang LS, Han R, Gao B, Liu XQ, Qin ZH (2011) Combined prostaglandin E1 and lithium exert potent neuroprotection in a rat model of cerebral ischemia. Acta Pharmacol Sin 32:303–310. https://doi.org/10.1038/aps.2010.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Cheng CY, Kao ST, Lee YC (2019) Ferulic acid exerts anti-apoptotic effects against ischemic injury by activating HSP70/Bcl-2- and HSP70/autophagy-mediated signaling after permanent focal cerebral ischemia in rats. Am J Chin Med 47:39–61. https://doi.org/10.1142/S0192415X19500034

    Article  CAS  PubMed  Google Scholar 

  250. Polster BM, Basanez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454. https://doi.org/10.1074/jbc.M413269200

    Article  CAS  PubMed  Google Scholar 

  251. Li SS, Zhang YS, Fei LL et al (2022) Baicalein-ameliorated cerebral ischemia-reperfusion injury dependent on calpain 1/AIF pathway. Biosci Biotechnol Biochem 86:305–312. https://doi.org/10.1093/bbb/zbab222

    Article  PubMed  Google Scholar 

  252. Kalpage HA, Wan J, Morse PT, Lee I, Huttemann M (2020) Brain-specific serine-47 modification of cytochromec regulates cytochrome coxidase activity attenuating ROS production and cell death: implications for ischemia/reperfusion injury and Akt signaling. Cells 9:1843. https://doi.org/10.3390/cells9081843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Zhang H, Zhai L, Wang T, Li S, Guo Y (2017) Picroside II exerts a neuroprotective effect by inhibiting the mitochondria cytochrome C signal pathway following ischemia reperfusion injury in rats. J Mol Neurosci 61:267–278. https://doi.org/10.1007/s12031-016-0870-0

    Article  CAS  PubMed  Google Scholar 

  254. Li X-J, Liang L, Shi H-X, Sun X-P, Wang J, Zhang L-S (2017) Neuroprotective effects of curdione against focal cerebral ischemia reperfusion injury in rats. Neuropsychiatr Dis Treat 13:1733–1740. https://doi.org/10.2147/ndt.S139362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhao Q, Cheng X, Wang X, Wang J, Zhu Y, Ma X (2016) Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 192:140–147. https://doi.org/10.1016/j.jep.2016.07.016

    Article  PubMed  Google Scholar 

  256. Gao Y, Chen T, Lei X et al (2016) Neuroprotective effects of polydatin against mitochondrial-dependent apoptosis in the rat cerebral cortex following ischemia/reperfusion injury. Mol Med Rep 14:5481–5488. https://doi.org/10.3892/mmr.2016.5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hu Q, Luo L, Yang P, Mu K, Yang H, Mao S (2023) Neuroprotection of boropinol-B in cerebral ischemia-reperfusion injury by inhibiting inflammation and apoptosis. Brain Res 1798:148132. https://doi.org/10.1016/j.brainres.2022.148132

    Article  CAS  PubMed  Google Scholar 

  258. Alsharafi WA, Bi FF, Hu YQ, Mujlli HM, Xiao B (2015) Effect of Khat on apoptosis and related gene Smac/DIABLO expression in the cerebral cortex of rats following transient focal ischemia. Environ Toxicol Pharmacol 39:424–432. https://doi.org/10.1016/j.etap.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  259. Zhang X, Xue X, Xian L, Guo Z, Ito Y, Sun W (2016) Potential neuroprotection of protodioscin against cerebral ischemia-reperfusion injury in rats through intervening inflammation and apoptosis. Steroids 113:52–63. https://doi.org/10.1016/j.steroids.2016.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Liu J, Chen Q, Jian Z et al (2016) Daphnetin protects against cerebral ischemia/reperfusion injury in mice via inhibition of TLR4/NF-kappa B signaling pathway. Biomed Res Int. https://doi.org/10.1155/2016/2816056

    Article  PubMed  PubMed Central  Google Scholar 

  261. Liao LX, Wang JK, Wan YJ et al (2020) Protosappanin A maintains neuronal mitochondrial homeostasis through promoting autophagic degradation of bax. ACS Chem Neurosci 11:4223–4230. https://doi.org/10.1021/acschemneuro.0c00488

    Article  CAS  PubMed  Google Scholar 

  262. Yu L, Wang Y, Tang J, Shu Z, Han X (2022) Astragaloside IV ameliorates cerebral ischemia-reperfusion injury via upregulation of PKA and Cx36. NeuroReport 33:656–662. https://doi.org/10.1097/wnr.0000000000001831

    Article  CAS  PubMed  Google Scholar 

  263. Fengwei M, Qingfang D, Huayong L et al (2022) Vulgarisin-type diterpenoids from self-heal (Prunella vulgaris) and their neuroprotective effects against ischemia/reperfusion (I/R) viaa mitochondria-related pathway. Food Funct 13:7062–7074. https://doi.org/10.1039/d2fo00150k

    Article  CAS  Google Scholar 

  264. Zhao D, Ji J, Li S, Wu A (2022) Skullcapflavone II protects neuronal damage in cerebral ischemic rats via inhibiting NF-kappa B and promoting angiogenesis. Microvasc Res 141:104318. https://doi.org/10.1016/j.mvr.2022.104318

    Article  CAS  PubMed  Google Scholar 

  265. Ye Y, Li J, Cao X, Chen Y, Ye C, Chen K (2016) Protective effect of n-butyl alcohol extracts from Rhizoma Pinelliae Pedatisectae against cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 188:259–265. https://doi.org/10.1016/j.jep.2016.04.046

    Article  PubMed  Google Scholar 

  266. Lou J, Cao G, Li R, Liu J, Dong Z, Xu L (2016) beta-Caryophyllene attenuates focal cerebral ischemia-reperfusion injury by Nrf2/HO-1 pathway in rats. Neurochem Res 41:1291–1304. https://doi.org/10.1007/s11064-016-1826-z

    Article  CAS  PubMed  Google Scholar 

  267. Lu J, Li Y-H, Zhan X, Li G, Chen Z, Chen X (2016) The protective effect of qiancao naomaitong mixture on neuronal damage and cerebral ischemia/reperfusion injury. Pharm Biol 54:2304–2311. https://doi.org/10.3109/13880209.2016.1155627

    Article  CAS  PubMed  Google Scholar 

  268. Gao X-J, Xie G-N, Liu L, Fu Z-J, Zhang Z-W, Teng L-Z (2017) Sesamol attenuates oxidative stress, apoptosis and inflammation in focal cerebral ischemia/reperfusion injury. Exp Ther Med 14:841–847. https://doi.org/10.3892/etm.2017.4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. He B, Chen P, Xie Y et al (2017) 20(R)-Ginsenoside Rg3 protects SH-SY5Y cells against apoptosis induced by oxygen and glucose deprivation/reperfusion. Bioorg Med Chem Lett 27:3867–3871. https://doi.org/10.1016/j.bmcl.2017.06.045

    Article  CAS  PubMed  Google Scholar 

  270. Yu H, Liu P, Tang H et al (2016) Oleuropein, a natural extract from plants, offers neuroprotection in focal cerebral ischemia/reperfusion injury in mice. Eur J Pharmacol 775:113–119. https://doi.org/10.1016/j.ejphar.2016.02.027

    Article  CAS  PubMed  Google Scholar 

  271. Liu B, Li F, Shi J, Yang D, Deng Y, Gong Q (2016) Gastrodin ameliorates subacute phase cerebral ischemia-reperfusion injury by inhibiting inflammation and apoptosis in rats. Mol Med Rep 14:4144–4152. https://doi.org/10.3892/mmr.2016.5785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Chen H, Tian M, Jin L, Jia H, Jin Y (2015) Puma is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes. Neuroscience 284:824–832. https://doi.org/10.1016/j.neuroscience.2014.10.059

    Article  CAS  PubMed  Google Scholar 

  273. Liu W, Miao Y, Zhang L, Xu X, Luan Q (2020) MiR-211 protects cerebral ischemia/reperfusion injury by inhibiting cell apoptosis. Bioengineered 11:189–200. https://doi.org/10.1080/21655979.2020.1729322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Zhang B, Song C, Feng B, Fan W (2016) Neuroprotection by triptolide against cerebral ischemia/reperfusion injury through the inhibition of NF-κB/PUMA signal in rats. Ther Clin Risk Manag 12:817–824. https://doi.org/10.2147/tcrm.S106012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Glab JA, Puthalakath H, Zhang SR et al (2022) Bim deletion reduces functional deficits following ischemic stroke in association with modulation of apoptosis and inflammation. Neuromolecular Med 24:405–414. https://doi.org/10.1007/s12017-022-08703-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Song J, Zhang W, Wang J et al (2019) Inhibition of FOXO3a/BIM signaling pathway contributes to the protective effect of salvianolic acid A against cerebral ischemia/reperfusion injury. Acta Pharm Sin B 9:505–515. https://doi.org/10.1016/j.apsb.2019.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  277. Studencka M, Schaber J (2017) Senoptosis: non-lethal DNA cleavage as a route to deep senescence. Oncotarget 8:30656–30671

    Article  PubMed  PubMed Central  Google Scholar 

  278. Li S, Wang TT, Zhai L et al (2018) Picroside II exerts a neuroprotective effect by inhibiting mPTP permeability and EndoG release after cerebral ischemia/reperfusion injury in rats. J Mol Neurosci 64:144–155. https://doi.org/10.1007/s12031-017-1012-z

    Article  CAS  PubMed  Google Scholar 

  279. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7:988–994. https://doi.org/10.1038/sj.embor.7400795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Chu SF, Zhang Z, Zhang W et al (2017) Upregulating the expression of survivin-HBXIP complex contributes to the protective role of IMM-H004 in transient global cerebral ischemia/reperfusion. Mol Neurobiol 54:524–540. https://doi.org/10.1007/s12035-015-9673-5

    Article  CAS  PubMed  Google Scholar 

  281. Xing BZ, Chen H, Zhang M et al (2008) Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke 39:2362–2369. https://doi.org/10.1161/strokeaha.107.507939

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Research Fund Project of Heilongjiang University of Chinese Medicine (2019MS37).

Author information

Authors and Affiliations

Authors

Contributions

NZ and YG wrote the manuscript. HJ, XJ collected and analyzed the references. All authors read and agreed the final manuscript.

Corresponding author

Correspondence to Xicheng Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Informed consent

Not applicable.

Research involving human and/or animal participants

This article does not contain human or animal studies performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Gao, Y., Jia, H. et al. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia–reperfusion injury. Apoptosis 28, 702–729 (2023). https://doi.org/10.1007/s10495-023-01824-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01824-6

Keywords

Navigation