Skip to main content
Log in

Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof RNAi induced apoptosis in the eye discs. mof RNAi induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof RNAi induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof 1 mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof RNAi proceeds through a caspase-dependent and JNK mediated pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Avvakumov N, Cote J (2007) The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26:5395–5407

    Article  CAS  PubMed  Google Scholar 

  2. Rea S, Xouri G, Akhtar A (2007) Males absent on the first (MOF): from flies to humans. Oncogene 26:5385–5394

    Article  CAS  PubMed  Google Scholar 

  3. Thomas T, Voss AK (2007) The diverse biological roles of MYST histone acetyltransferase family proteins. Cell Cycle 6:696–704

    Article  CAS  PubMed  Google Scholar 

  4. Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32:959–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16:2054–2060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Neal KC, Pannuti A, Smith ER, Lucchesi JC (2000) A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. Biochim Biophys Acta 1490:170–174

    Article  CAS  PubMed  Google Scholar 

  7. Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK (2005) Involvement of human MOF in ATM function. Mol Cell Biol 25:5292–5305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sharma GG, So S, Gupta A, Kumar R, Cayrou C, Avvakumov N, Bhadra U, Pandita RK, Porteus MH, Chen DJ, Cote Pandita TK (2010) MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol Cell Biol 30:3582–3595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lucchesi JC, Kelly WG, Panning B (2005) Chromatin remodeling in dosage compensation. Annu Rev Genet 39:615–651

    Article  CAS  PubMed  Google Scholar 

  10. Mendjan S, Akhtar A (2007) The right dose for every sex. Chromosoma 116:95–106

    Article  PubMed Central  PubMed  Google Scholar 

  11. Rea S, Akhtar A (2006) MSL proteins and the regulation of gene expression. Curr Top Microbiol Immunol 310:117–140

    CAS  PubMed  Google Scholar 

  12. Straub T, Becker PB (2007) Dosage compensation: the beginning and end of generalization. Nat Rev Genet 8:47–57

    Article  CAS  PubMed  Google Scholar 

  13. Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein-RNA interaction modules. Nature 407:405–409

    Article  CAS  PubMed  Google Scholar 

  14. Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RG, Allis CD, Lucchesi JC (2000) The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20:312–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25:9175–9188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25:6798–6810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839

    Article  CAS  PubMed  Google Scholar 

  18. Bhadra MP, Horikoshi N, Pushpavallipvalli SN, Sarkar A, Bag I, Krishnan A, Lucchesi JC, Kumar R, Yang Q, Pandita RK, Singh M, Bhadra U, Eissenberg JC, Pandita TK (2012) The role of MOF in the ionizing radiation response is conserved in Drosophila melanogaster. Chromosoma 121:79–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  20. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  21. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  22. Salvesen GS, Abrams JM (2004) Caspase activation: stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 23(16):2774–2784

    Article  CAS  PubMed  Google Scholar 

  23. Sonnenfeld MJ, Jacobs JR (1995) Apoptosis of the midline glia during Drosophila embryogenesis—a correlation with axon contact. Development 121(2):569–578

    CAS  PubMed  Google Scholar 

  24. Zhou L, Hashimi H, Schwartz LM, Nambu JR (1995) Programmed cell-death in the Drosophila central-nervous-system midline. Curr Biol 5(7):784–790

    Article  CAS  PubMed  Google Scholar 

  25. Jiang CG, Baehrecke EH, Thummel CS (1997) Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124(22):4673–4683

    CAS  PubMed  Google Scholar 

  26. Baehrecke EH (2003) Autophagic programmed cell death in Drosophila. Cell Death Differ 10(9):940–945

    Article  CAS  PubMed  Google Scholar 

  27. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19:589–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Clem RJ, Miller LK (1994) Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 14:5212–5222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9:1694–1708

    Article  CAS  PubMed  Google Scholar 

  30. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264:677–683

    Article  CAS  PubMed  Google Scholar 

  31. Chen P, Nordstrom W, Gish B, Abrams JM (1996) Grim, a novel cell death gene in Drosophila. Genes Dev 10:1773–1782

    Article  CAS  PubMed  Google Scholar 

  32. Bergmann A, Agapite J, McCall K, Steller H (1998) The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95:331–341

    Article  CAS  PubMed  Google Scholar 

  33. Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98:453–463

    Article  CAS  PubMed  Google Scholar 

  34. Huh JR, Foe I, Muro I, Chen CH, Seol JH, Yoo SJ, Guo M, Park JM, Hay BA (2007) The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J Biol Chem 282:2056–2068

    Article  CAS  PubMed  Google Scholar 

  35. Sogame N, Kim M, Abrams JM (2003) Drosophila p53 preserves genomic stability by regulating cell death. Proc Natl Acad Sci USA 100:4696–4701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Fan Y, Lee TV, Xu D, Chen Z, Lamblin AF, Steller H, Bergmann A (2010) Dual roles of Drosophila p53 in cell death and cell differentiation. Cell Death Differ 17:912–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1:a001883

    Article  PubMed Central  PubMed  Google Scholar 

  38. Brodsky MH, Sekelsky JJ, Tsang G, Hawley RS, Rubi GM (2000) mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development. Genes Dev 14:666–678

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  41. Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12:14–21

    Article  CAS  PubMed  Google Scholar 

  42. Kuranaga E, Kanuka H, Igaki T, Sawamoto K, Ichijo H, Okano H, Miura M (2002) Reaper-mediated inhibition of DIAP1-induced DTRAF1 degradation results in activation of JNK in Drosophila. Nat Cell Biol 4:705–710

    Article  CAS  PubMed  Google Scholar 

  43. Pushpavalli SN, Sarkar A, Bag I, Hunt CR, Ramaiah MJ, Pandita TK, Bhadra U, Pal-Bhadra M (2014) Argonaute-1 functions as a mitotic regulator by controlling Cyclin B during Drosophila early embryogenesis. FASEB J 28:655–666

    Article  CAS  PubMed  Google Scholar 

  44. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  45. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  46. Cavalli G, Paro R (1999) Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286:955–958

    Article  CAS  PubMed  Google Scholar 

  47. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  48. Vucic D, Kaiser WJ, Harvey AJ, Miller LK (1997) Inhibition of reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs). Proc Natl Acad Sci USA 94:10183–10188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. McCarthy JV, Dixit VM (1998) Apoptosis induced by Drosophila reaper and grim in a human system. Attenuation by inhibitor of apoptosis proteins (cIAPs). J Biol Chem 273:24009–24015

    Article  CAS  PubMed  Google Scholar 

  50. Bump NJ, Hackett M, Hugunin M, Seshagiri S, Brady K, Chen P, Ferenz C, Franklin S, Ghayur T, Li P et al (1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269:1885–1888

    Article  CAS  PubMed  Google Scholar 

  51. Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83:1253–1262

    Article  CAS  PubMed  Google Scholar 

  52. Ryoo HD, Bergmann A, Gonen H, Ciechanover A, Steller H (2002) Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat Cell Biol 4:432–438

    Article  CAS  PubMed  Google Scholar 

  53. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Lisi S, Mazzon I, White K (2000) Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154:669–678

    PubMed Central  CAS  PubMed  Google Scholar 

  55. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17:3247–3259

    Article  PubMed  Google Scholar 

  56. Uren AG, Coulson EJ, Vau DL (1998) Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci 23:159–162

    Article  CAS  PubMed  Google Scholar 

  57. Glavic A, Molnar C, Cotoras D, Celis JF (2009) Drosophila Axud1 is involved in the control of proliferation and displays pro-apoptotic activity. Mech Dev 126:184–197

    Article  CAS  PubMed  Google Scholar 

  58. Igaki T, Kanda H, Yamamoto-Goto Y, Kanuka H, Kuranaga E, Aigaki T, Miura M (2002) Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J 21:3009–3018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Wu C, Chen C, Dai J, Zhang F, Chen Y, Li W, Pastor-Pareja JC, Xue L (2015) Toll pathway modulates TNF-induced JNK-dependent cell death in Drosophila. Open Biol 5(7):140171. doi:10.1098/rsob.140171

    Article  PubMed Central  PubMed  Google Scholar 

  60. Yang SA, Su MT (2011) Excessive Dpp signalling induces cardial apoptosis through dTAK1 and dJNK during late embryogenesis of Drosophila. J Biomed Sci 18:85. doi:10.1186/1423-0127-18-85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cellproliferation through the JNK and the Wingless signalling pathways. Dev Cell 7:491–501

    Article  CAS  PubMed  Google Scholar 

  62. Perez-Garijo A, Shlevkov E, Morata G (2009) The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development 136:1169–1177

    Article  CAS  PubMed  Google Scholar 

  63. Bergantinos C, Corominas M, Serras F (2010) Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137:1169–1179

    Article  CAS  PubMed  Google Scholar 

  64. Takatsu Y, Nakamura M, Stapleton M, Danos MC, Matsumoto K, O’Connor MB, Shibuya H, Ueno N (2000) TAK1 participates in c-Jun N-terminal kinase signaling during Drosophila development. Mol Cell Biol 20(9):3015–3026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Gregory CD (2013) Death in the nervous system: JNK signaling in junk clearance. Cell Death Differ 20:1125–1127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of apical cell death caspase Dronc in a non-apoptotic role. Curr Biol 14:1262–1266

    Article  CAS  PubMed  Google Scholar 

  67. Wells BS, Yoshida E, Johnston A (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16:1606–1615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M (2006) DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 26:7258–7268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Betz A, Ryoo HD, Steller H, Darnell JE Jr (2008) STAT92E is a positive regulator of Drosophila inhibitor of apoptosis 1 (DIAP/1) and protects against radiation-induced apoptosis. Proc Natl Acad Sci USA 105:13805–13810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Conrad T, Akhtar A (2011) Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet 13:123–134

    Article  Google Scholar 

  71. Gupta A, Guerin-Peyrou TG, Sharma GG, Park C, Agarwal M, Ganju RK, Pandita S, Choi K, Sukumar S, Pandita RK, Ludwig T, Pandita TK (2008) The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol 28:397–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S (2009) Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138:1122–1136

    Article  CAS  PubMed  Google Scholar 

  73. Kind J, Vaquerizas JM, Gebhardt P, Gentzel M, Luscombe NM, Bertone P, Akhtar A (2008) Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133:813–828

    Article  CAS  PubMed  Google Scholar 

  74. Vernooy SY, Copeland J, Ghaboosi N, Griffin EE, Yoo SJ, Hay BA (2000) Cell death regulation in Drosophila: conservation of mechanism and unique insights. J Cell Biol 150:F69–F76

    Article  CAS  PubMed  Google Scholar 

  75. Shi Y (2001) A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 8:394–401

    Article  CAS  PubMed  Google Scholar 

  76. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    Article  CAS  PubMed  Google Scholar 

  77. Ollmann M, Young LM, DiComo CJ, Karim F, Belvin M, Robertson S, Whittaker K, Demsky M, Fisher WW, Buchman A, Duyk G, Friedman L, Prives C, Kopczynski C (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101:91–101

    Article  CAS  PubMed  Google Scholar 

  78. Palaga T, Osborne B (2002) The 3D’s of apoptosis: death, degradation and DIAPs. Nat Cell Biol 4:E149–E151

    Article  CAS  PubMed  Google Scholar 

  79. Bergmann A, Yang AY, Srivastava M (2003) Regulators of IAP function: coming to grips with the grim reaper. Curr Opin Cell Biol 15:717–724

    Article  CAS  PubMed  Google Scholar 

  80. Wilson R, Goyal L, Ditzel M, Zachariou A, Baker DA, Agapite J, Steller H, Meier P (2002) The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nat Cell Biol 4:445–450

    Article  CAS  PubMed  Google Scholar 

  81. Chai J, Yan N, Huh JR, Wu JW, Li W, Hay BA, Shi Y (2003) Molecular mechanism of Reaper–Grim–Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nat Struct Biol 10:892–898

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by Department of Biotechnology to MPB [GAP 0362] and UB. The authors thank Prof. John C. Lucchesi for fly stocks. AS, GKR thank UGC for their fellowship and IB thank CSIR for her postdoctoral fellowship. All the authors thank P. Devender for culturing and maintaining the Drosophila stocks. Our thanks to Hemalatha for help in formatting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manika Pal-Bhadra.

Additional information

Sreerangam N. C. V. L. Pushpavalli, Arpita Sarkar and M. Janaki Ramaiah have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushpavalli, S.N.C.V.L., Sarkar, A., Ramaiah, M.J. et al. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway. Apoptosis 21, 269–282 (2016). https://doi.org/10.1007/s10495-015-1206-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1206-1

Keywords

Navigation