Skip to main content
Log in

Modeling of Conjugate Heat Transfer in a Kerosene/Air Spray Flame used for Aeronautical Fire Resistance Tests

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Airworthiness standards require a fire resistance demonstration for aircraft or helicopter engines to obtain a type certificate. This demonstration relies on tests performed with prototype engine parts in the late stages of the development. In hardest tests, a kerosene standardized flame with imposed burnt gas temperature and heat flux is placed next to the engine casing during a given time. The aim of this work is to provide a better characterization of a kerosene/air certification burner in order to reach a better understanding of the thermal environment during fire tests. To this purpose, Large-Eddy Simulation (LES) of the certification burner is carried out. Spray combustion, forced convection on walls and conduction in the solid parts of the burner are coupled to achieve a detailed description of heat transfer. In a first place, physical aspects involved inside the burner in an adiabatic case are described. Then, differences that exist with a conjugate convective and conductive heat transfer case are analyzed. To a larger extent, the aim is to have a better characterization of the flow impinging the casing and to progress on fire test modeling so as to minimize the risks of test failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Certification specifications for engines. Annex to ED decision 2010/015/R amendment 3 european aviation safety agency (2010)

  2. ISO 2685:1998: Aircraft - environmental conditions and test procedures for airborne equipment - resistance to fire in designated fire zones. Technical report, The International Organization for Standardization (ISO) (1998)

  3. US Department of Transportation. Powerplant installation and propulsion system component fire protection test methods, standards and criteria. Technical report, Federal Aviation Administration: Advisory Circular (AC) (1990)

  4. Ochs, R.I.: Design and Analysis of the Federal Aviation Administration Next Generation Fire Test Burner. PhD thesis at Rutgers University, USA (2013)

    Google Scholar 

  5. Le Neve, S.: AC20-135/ ISO 2685, Fire tests on components used in fire zones. Comparison of gas burner to oil burner. Proceedings of the FAA Materials Meeting, Atlantic City (2008)

    Google Scholar 

  6. Tranchard, P., Samyn, F., Duquesne, S., Thomas, M., Estèbe, B., Montès, J.L., Bourbigot, S.: Fire behaviour of carbon fibre epoxy composite for aircraft: Novel test bench and experimental study. J. Fire Sci. 33(3), 247–266 (2015)

    Article  Google Scholar 

  7. Kao, Y.H., Tambe, S.B., Ochs, R., Summer, S., Jeng, S.M.: Experimental study of the burner for FAA fire test: Nexgen burner. Fire Mater. 41(7), 898–907 (2017)

    Article  Google Scholar 

  8. Neely, A., Ireland, P.: Pilot study to investigate novel experimental and theoretical fire-event modelling techniques. AIAA, 37th ASME, vol. 99–0326 (1999)

  9. Sikoutris, D.E., Vlachos, D.E., Kostopoulos, V., Jagger, S., Ledin, S.: Fire burnthrough response of CFRP aerostructures. Numerical investigation and experimental verification. Appl. Compos. Mater. 19(2), 141–159 (2012)

    Article  Google Scholar 

  10. Grange, N., Chetehouna, K., Gascoin, N., Senave, S.: Numerical investigation of the heat transfer in an aeronautical composite material under fire stress. Fire Saf. J. 80, 56–63 (2016)

    Article  Google Scholar 

  11. Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel CFD code for complex geometries. C. R. Mécanique 339, 141–148 (2011)

    Article  Google Scholar 

  12. Pierce, C.D., Moin, P.: Progress-variable approach for large eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  Google Scholar 

  13. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MathSciNet  Google Scholar 

  14. Kim, J., Moin, P.: Application of a fractional-step method to incompressible navier-stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)

    Article  MathSciNet  Google Scholar 

  15. Kraushaar, M.: Application of the Compressible and Low-Mach Number Approaches to Large-Eddy Simulation of Turbulent Flows in Aero-Engines. FRANCE, PhD thesis at CERFACS of Toulouse (2011)

    Google Scholar 

  16. Edwards, T., Maurice, L.Q.: Surrogate mixtures to represent complex aviation and rocket fuels. J. Propul. Power 17(2), 461–466 (2001)

    Article  Google Scholar 

  17. Orain, M., Baranger, P., Ledier, C., Apeloig, J., Grisch, F.: Fluorescence spectroscopy of kerosene vapour at high temperatures and pressures: potential for gas turbines measurements. Appl. Phys. B 116(3), 729–745 (2014)

    Article  Google Scholar 

  18. Rachner, M.: Die Stoffeigenschaften von Kerosin Jet A-1. DLR-Mitteilung 152, 98–01 (1998). [in German]

    Google Scholar 

  19. Vovelle, C., Delfau, J.L., Reuillon, M.: Formation of aromatic hydrocarbons in decane and kerosene flames at reduced pressure. Soot Formation Combust 59, 50–65 (1994)

    Article  Google Scholar 

  20. Riesmeier, E., Honnet, S., Peters, N.: Flamelet modeling of pollutant formation in a gas turbine combustion chamber using detailed chemistry for a kerosene model fuel. J. Eng. Gas Turbines Power. 126(4), 899–905 (2004)

    Article  Google Scholar 

  21. Balès-Guéret, C., Cathonnet, M., Boettner, J.C., Gaillard, F.: Experimental study and kinetic modeling of higher hydrocarbon oxidation in a jet-stirred flow reactor. Energy Fuels 6(2), 189–194 (1992)

    Article  Google Scholar 

  22. Elliott, L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Whittaker, S.: Reaction mechanism reduction and optimisation for modelling aviation fuel oxidation using standard and hybrid genetic algorithms. Comput. Chem. Eng. 30 (5), 889–900 (2006)

    Article  Google Scholar 

  23. Slavinskaya, N.A., Zizin, A., Aigner, M.: On model design of a surrogate fuel formulation. J. Eng. Gas Turbines Power 132(11), 111501 (2010)

    Article  Google Scholar 

  24. Anand, K., Ra, Y., Reitz, R.D., Bunting, B.: Surrogate model development for fuels for advanced combustion engines. Energy Fuels 25(4), 1474–1484 (2011)

    Article  Google Scholar 

  25. Schulz, W.D.: Oxidation products of a surrogate JP-8 fuel. Preprints-american Chemical Society. Div. Pet. Chem. 37(2), 383–392 (1992)

    Google Scholar 

  26. Delfau, J.L., Bouhria, M., Reuillon, M., Sanogo, O., Akrich, R., Vovelle, C.: Experimental and computational investigation of the structure of a sooting decane-O2-Ar flame. Proc. Combust. Inst. 23, 1567–1572 (1991)

    Article  Google Scholar 

  27. Cathonnet, M., Balès-Guéret, C., Chakir, A., Dagaut, P., Boettner, J.C., Schultz, J.L.: On the Use of Detailed Chemical Kinetics to Model Aeronautical Combustors Performances. Proc. of the Third European Propulsion Forum, EPF91, ONERA Paris, AAAF (1992)

  28. Dagaut, P.: On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Phys. Chem. Chem. Phys. 4(11), 2079–2094 (2002)

    Article  Google Scholar 

  29. Luche, J., Reuillon, M., Boettner, J.C., Cathonnet, M.: Reduction of large detailed kinetic mechanisms: application to kerosene/air combustion. Combust. Sci. Technol. 176(11), 1935–1963 (2004)

    Article  Google Scholar 

  30. Franzelli, B., Riber, E., Sanjosé, M., Poinsot, T.: A two-step chemical scheme for kerosene-air premixed flames. Combust. Flame 157(7), 1364–1373 (2010)

    Article  Google Scholar 

  31. Bénard, P., Moureau, V., Lartigue, J., D’Angelo, Y.: Large-eddy Simulation of a hydrogen enriched methane/air meso-scale combustor. Int. J. Hydrog. Energy 42 (4), 2397–2410 (2017)

    Article  Google Scholar 

  32. Boussinesq, J.: Théorie de l’écoulement tourbillonant. Mem. Pres. Acad. Sci. 42, 23–46 (1877)

    Google Scholar 

  33. Germano, M., Piomelli, U., Moin, P., Cabot. W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. (1989-1993) 3(7), 1760–1765 (1991)

    Article  Google Scholar 

  34. Butler, T.D., O’Rourke, P.J.: A numerical method for two dimensional unsteady reacting flows. Proc. Combust. Inst. 16, 1503–1515 (1977)

    Article  Google Scholar 

  35. Légier, J.P., Poinsot, T., Veynante, D.: Dynamically thickened flame les model for premixed and nonpremixed turbulent combustion. Proc. of the Summer Program, 157–168 (2000)

  36. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131(1-2), 159–180 (2002)

    Article  Google Scholar 

  37. Guédot, L.: Développement de méthodes numériques pour la caractérisation des grandes structures tourbillonnaires dans les brûleurs aéronautiques: application aux systèmes d’injection multi-points. PhD thesis at Institut National des Sciences appliquées de Rouen, France (2015)

    Google Scholar 

  38. Schiller, L., Naumann, Z.: A drag coefficient correlation. Vdi Zeitung 77(318), 51 (1935)

    Google Scholar 

  39. Spalding, D.B.: The combustion of liquid fuels. Proc. Combust. Inst. 4, 847–864 (1953)

    Article  Google Scholar 

  40. Abramzon, B., Sirignano, W.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32(9), 1605–1618 (1989)

    Article  Google Scholar 

  41. Kuo, K.: Principles of combustion. Wiley, Hoboken (1986)

    Google Scholar 

  42. Sirignano, W.A.: Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  43. Guédot, L., Lartigue, G., Moureau, V.: Modeling and analysis of the interactions of coherent structures with a spray flame in a swirl burner. Turbul. Interactions 135, 15–26 (2015)

  44. Farcy, B., Vervisch, L., Domingo, P.: Large eddy simulation of selective non-catalytic reduction (SNCR): a downsizing procedure for simulating nitric-oxide reduction units. Chem. Eng. Sci. 139, 285–303 (2016)

    Article  Google Scholar 

  45. Esclapez, L., Ma, P.C., Mayhew, E., Xu, R., Stouffer, S., Lee, T., Ihme, M.: Fuel effects on lean blow-out in a realistic gas turbine combustor. Combust. Flame 181, 82–99 (2017)

    Article  Google Scholar 

  46. Okong’o, N.A., Bellan, J.: Consistent large-eddy simulation of a temporal mixing layer laden with evaporating drops. Part 1: direct numerical simulation, formulation and a priori analysis. J. Fluid Mech. 499, 1–47 (2004)

    Article  MathSciNet  Google Scholar 

  47. Bini, M., Jones, W.: Particle acceleration in turbulent flows: a class of nonlinear stochastic models for intermittency. Phys. Fluids 19(3), 1–9 (2007)

    Article  Google Scholar 

  48. Hannebique, G., Sierra, P., Riber, E., Cuenot, B.: Large-eddy simulation of reactive two-phase flow in an aeronautical multipoint burner. Flow Turbul. Combust. 90(2), 449–469 (2013)

    Article  Google Scholar 

  49. Sanjosé, M., Senoner, J.M., Jaegle, F., Cuenot, B., Moreau, S., Poinsot, T.: Fuel injection model for euler-euler and euler-lagrange large-eddy simulations of an evaporating spray inside an aeronautical combustor. Int. J. Multiphase Flow 37(5), 514–529 (2011)

    Article  Google Scholar 

  50. Fourier, J.: Théorie analytique de la chaleur. Chez Firmin Didot, père et fils (1822)

  51. Malandain, M., Maheu, N., Moureau, V.: Optimization of the deflated Conjugate Gradient algorithm for the solving of elliptic equations on massively parallel machines. J. Comput. Phys. 238, 32–47 (2012)

    Article  MathSciNet  Google Scholar 

  52. Luo, J., Razinsky, E.H.: Conjugate heat transfer analysis of a cooled turbine vane using the v2f turbulence model. J. Turbomach. 129(4), 773–781 (2007)

    Article  Google Scholar 

  53. He, L., Oldfield, M.L.G.: Unsteady conjugate heat transfer modeling. J. Turbomach. 133(3), 031022 (2011)

    Article  Google Scholar 

  54. York, W.D., Leylek, J.H.: Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane. ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, GT2003-38551, pp. 351–360 (2003)

  55. Duchaine, F., Corpron, A., Pons, L., Moureau, V., Nicoud, F., Poinsot, T.: Development and assessment of a coupled strategy for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade. Int. J. Heat Fluid Flow. 30(6), 1129–1141 (2009)

    Article  Google Scholar 

  56. Jauré, S., Duchaine, F., Staffelbach, G., Gicquel, L.Y.M.: Massively parallel conjugate heat transfer methods relying on large eddy simulation applied to an aeronautical combustor. Comput. Sci. Discov. 6(1), 015008 (2013)

    Article  Google Scholar 

  57. Florenciano, J.L., Bruel, P.: LES Fluid-solid coupled calculations for the assessment of heat transfer coefficient correlations over multi-perforated walls. Aerosp. Sci. Technol. 53, 61–73 (2016)

    Article  Google Scholar 

  58. Scholl, S., Verstraete, T., Duchaine, F., Gicquel, L.: Conjugate heat transfer of a rib-roughened internal turbine blade cooling channel using large eddy simulation. Int. J. Heat Fluid Flow. 61, 650–664 (2016)

    Article  Google Scholar 

  59. Misdariis, A., Vermorel, O., Poinsot, T.: LES Of knocking in engines using dual heat transfer and two-step reduced schemes. Combust. Flame 162(11), 4304–4312 (2015)

    Article  Google Scholar 

  60. Giles, M.B.: Stability analysis of numerical interface conditions in fluid-structure thermal analysis. Int. J. Numer. Methods Fluids 25(4), 421–436 (1997)

    Article  MathSciNet  Google Scholar 

  61. Felippa, C.A., Park, K.C., Farhat, C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190(24), 3247–3270 (2001)

    Article  Google Scholar 

  62. Duchaine, F., Jauré, S., Poitou, D., Quémerais, E., Staffelbach, G., Morel, T., Gicquel, L.: Analysis of high performance conjugate heat transfer with the OpenPALM coupler. Comput. Sci. Discov. 8(1), 015003 (2015)

    Article  Google Scholar 

  63. Shapiro, R.: Linear filtering. Math. Comput. 29(132), 1094–1097 (1975)

    Article  MathSciNet  Google Scholar 

  64. Maheu, N., Moureau, V., Domingo, P.: Large-eddy simulations of flow and heat transfer around a low-Mach number turbine blade. Proc. of the Summer Program, 137–146 (2012)

  65. Nguyen, P.D., Moureau, V., Vervisch, L., Perret, N.: A massively parallel solution strategy for efficient thermal radiation simulation. J. Phys. Conf. Ser. 369(1), 012017 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was granted access to the HPC resources from CINES (Centre Informatique National de l’Enseignement Superieur), from IDRIS (Institut du Developpement et des Ressources en Informatique Scientifique) and from TGCC-CEA under the allocations x20172b6880 made by GENCI (Grand Equipement National de Calcul Intensif). It was also granted CPU time by CRIANN under the allocation 2012006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Boulet.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulet, L., Bénard, P., Lartigue, G. et al. Modeling of Conjugate Heat Transfer in a Kerosene/Air Spray Flame used for Aeronautical Fire Resistance Tests. Flow Turbulence Combust 101, 579–602 (2018). https://doi.org/10.1007/s10494-018-9965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9965-8

Keywords

Navigation