Skip to main content
Log in

Large Eddy Simulation of Reactive Two-Phase Flow in an Aeronautical Multipoint Burner

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Because of compressibility criteria, fuel used in aeronautical combustors is liquid. Their numerical simulation therefore requires the modeling of two-phase flames, involving key phenomena such as injection, atomization, polydispersion, drag, evaporation and turbulent combustion. In the present work, particular modeling efforts have been made on spray injection and evaporation, and their coupling to turbulent combustion models in the Large Eddy Simulation (LES) approach. The model developed for fuel injection is validated against measurements in a non-evaporating spray in a quiescent atmosphere, while the evaporation model accuracy is discussed from results obtained in the case of evaporating isolated droplets. These models are finally used in reacting LES of a multipoint burner in take-off conditions, showing the complex two-phase flame structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan, L.L., Street, R.L., Ferziger, J.H.: Large-eddy simulations of a round jet in crossflow. J. Fluid Mech. 379, 71–104 (1999)

    Article  MATH  Google Scholar 

  2. Yang, K.S., Ferziger, J.H.,: Large-eddy simulation of turbulent obstacle flow using a dynamic subgrid-scale model. AIAA J. 31(8), 1406–1413 (1993)

    Article  MATH  Google Scholar 

  3. Verzicco, R., Mohd-Yusof, J., Orlandi, P., Haworth, D.: Large Eddy Simulation in complex geometric configurations using boundary body forces. AIAA J. 38(3), 427–433 (2000)

    Article  Google Scholar 

  4. Riley, J.:Review of Large-Eddy Simulation of non-premixed turbulent combustion. J. Fluids Eng. 128(2), 209–215 (2006)

    Article  Google Scholar 

  5. Murota, T., Ohtsuka, M.: Large-Eddy Simulations of combustion oscillation in premixed combustor. In: International Gas Turbine and Aeroengine Congress & Exposition, ASME Paper, vol. 99-GT-274 (1999)

  6. Itoh, Y., Taniguchi, N., Kobayashi, T., Tominaga, T.: Large Eddy Simulation of spray combustion in swirling flows. In: ASME FEDSM, Honolulu, Hawaii, USA (2003)

  7. Giffen, E., Muraszew, A.: Atomization of Liquid Fuels. Chapman & Hall, London (1953)

    Google Scholar 

  8. Spalding, D.B.: The combustion of liquid fuels. In: 4th Symp. (Int.) on Combustion, pp. 847–864. The Combustion Institute, Pittsburgh (1953)

    Google Scholar 

  9. Desoutter, G., Cuenot, B., Habchi, C., Poinsot, T.: Interaction of a premixed flame with a liquid fuel film on a wall. Proc. Combust. Inst. 30, 259–267 (2005)

    Article  Google Scholar 

  10. Brandt, M., Gugel, K.O., Hassa, C.: Experimental investigation of the liquid fuel evaporation in a premix duct for lean premixed and prevaporized combustion. J. Eng. Gas. Turbul. Power 119, 815–821 (1997)

    Article  Google Scholar 

  11. Caraeni, D., Bergstrom, C., Fuchs, L.: Modeling of liquid fuel injection, evaporation and mixing in a gas turbine burner using large eddy simulation. Flow Turbul. Combust. 65, 223–244 (2000)

    Article  MATH  Google Scholar 

  12. Chiu, H.H., Croke, E.J.: Group combustion of liquid fuel sprays. Energy Technology Lab 81–2. University of Illinois, Chicago (1981)

    Google Scholar 

  13. Nakamura, M., Akamatsu, F., Kurose, R., Katsuki, M.: Combustion mechanism of liquid fuel spray in a gaseous flame. Phys. Fluids 17, 123301 (2005)

    Article  Google Scholar 

  14. Sornek, R.J., Dobashi, R., Hirano, T.: Effect of turbulence on vaporization, mixing, and combustion of liquid-fuel sprays. Combust. Flame 120(4), 479–491 (2000)

    Article  Google Scholar 

  15. Imaoka, R.T., Sirignano, W.A.: A generalized analysis for liquid-fuel vaporization and burning. Int. J. Heat Mass Trasfer 48, 4342–4353 (2005)

    Article  MATH  Google Scholar 

  16. Menard, T., Tanguy, S., Berlemont, A.: Coupling level set/vof/ghost fluid methods: validation and application to 3d simulation of the primary break-up of a liquid jet. Int. J. Multiphase Flow 33, 510–524 (2007)

    Article  Google Scholar 

  17. Fuster, D., Bagué, A., Boeckc, T., Moynea, L.L., Leboissetier, A., Popinet, S., Raya, P., Scardovelli, R., Zaleski, S.: Simulation of primary atomization with an octree adaptive mesh refinement and VOF method. Int. J. Multiphase Flow 35, 550–565 (2009)

    Article  Google Scholar 

  18. Zuzio, D., Estivalezes, J.: An efficient block parallel AMR method for two phase interfacial flow simulations. Comput. Fluids 44, 339–357 (2011)

    Article  MathSciNet  Google Scholar 

  19. Boileau, M., Pascaud, S., Riber, E., Cuenot, B., Gicquel, L., Poinsot, T., Cazalens, M.: Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in gas turbines. Flow Turbul. Combust. 80(3), 291–321 (2008)

    Article  Google Scholar 

  20. Apte, S., Mahesh, K., Moin, P.: Large-eddy simulation of evaporating spray in a coaxial combustor. Proc. Combust. Inst. 32(2), 2247–2256 (2009)

    Article  Google Scholar 

  21. Sanjosé, M., Senoner, J., Jaegle, F., Cuenot, B., Moreau, S., Poinsot, T.: Fuel injection model for Euler–Euler and Euler–Lagrange Large-Eddy Simulations of an evaporating spray inside an aeronautical combustor. Int. J. Multiphase Flow 37, 514–529 (2011)

    Article  Google Scholar 

  22. Hirschfelder, J.O., Curtiss, F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley (1964)

  23. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R.T. Edwards (2001)

  24. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherrieu, C., Poinsot, T.: Large-eddy simulation of shock-turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)

    Article  MATH  Google Scholar 

  25. Smagorinsky, J.: General circulation experiments with the primitive equations: 1. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  26. Février, P., Simonin, O., Squires, K.: Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533, 1–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Simonin, O.: Gaz particules, Cours d’options, Ecole Nationale Superieure d’Electrotechnique, d’Electronique, d’Informatique, d’Hydraulique et des Télécommunications (2002)

  28. Riber, E., Moureau, V., García., M., Poinsot, T., Simonin, O.: Evaluation of numerical strategies for LES of two-phase reacting flows. J. Comput. Phys. 228, 539–564 (2009)

    Article  MATH  Google Scholar 

  29. Moreau, M., Simonin, O., Bédat, B.: Development of gas-particle Euler–Euler LES approach: a priori analysis of particle sub-grid models in homogeneous isotropic turbulence. Flow Turbul. Combust. 84, 295–324 (2010)

    Article  MATH  Google Scholar 

  30. Schiller, L., Nauman, A.: A drag coefficient correlation. VDI Zeitung 77, 318–320 (1935)

    Google Scholar 

  31. Colin, O., Rudgyard, M.: Development of high-order taylor-galerkin schemes for unsteady calculations. J. Comput. Phys. 162(2), 338–371 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lefebvre, A.H.: Atomization and sprays. In: Combustion. Hemisphere Publishing/Taylor & Francis (1989)

  34. Yang, J.T., Chen, A.C., Yang, S.H., Huang, K.J.: Flow analysis of spray patterns of pressure-swirl micro atomizers. In: Pacific Symposium on Flow Visualization and Image Processing, vol. 4052. National Tsing Hua University (2003)

  35. Nomura, H., Ujiie, Y., Rath, H.J., Sato, J., Kono, M.: Experimental study on high-pressure droplet evaporation using microgravity conditions. Proc. Combust. Inst. 26, 1267–1273 (1996)

    Google Scholar 

  36. Chauveau, C., Halter, F., Lalonde, A., Gokalp, I.: An experimental study on the droplet vaporization: effects of heat conduction through the support fiber. In: ILASS, 4-1. Como Lake, Italy (2008)

  37. Sanjosé, M.: Evaluation de la méthode Euler-Euler pour la simulation aux grandes échelles des chambres à carburant liquide, Ph.D. thesis, INP Toulouse (2009)

  38. Sierra, P.S.: Modeling the dispersion and evaporation of sprays in aeronautical combustion chambers. Ph.D. thesis, Institut National Polytechnique de Toulouse (2012)

  39. Abramzon, B., Sirignano, W.A.: Droplet vaporisation model for spray combustion calculations. Int. J. Heat Mass Transfer 9, 1605–1618 (1989)

    Article  Google Scholar 

  40. Ranz, W.E., Marshall, W.R.: Evaporation from drops. Chem. Eng. Prog. 48(4), 173 (1952)

    Google Scholar 

  41. Hubbard, G.L., Denny, V.E., Mills, A.F.: Droplet evaporation: effects of transient and variable properties. Int. J. Heat Mass Transfer 18, 1003–1008 (1975)

    Article  Google Scholar 

  42. Goodwin, D.G.: Cantera C+ + Users Guide. http://sourceforge.net/projects/cantera. Version 1.80 (01 01 2011) (2002). Accessed 1 Jan 2011

  43. Bird, R.B., Stewart, W.E., Lighfoot, E.N.: Transport Phenomena. Wiley, New York (1960)

    Google Scholar 

  44. Franzelli, B., Riber, E., Sanjosé, M., Poinsot, T.: A two-step chemical scheme for Large-Eddy Simulation of kerosene-air flames. Combust. Flame 157(7), 1364–1373 (2010)

    Article  Google Scholar 

  45. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)

    Article  Google Scholar 

  46. Jaegle, F., Senoner, J.M., Garcia, M., Bismes, F., Lecourt, R., Cuenot, B., Poinsot, T.: Lagrangian and eulerian simulations of evaporating fuel spray in an aeronautical multipoint injector. Proc. Combust. Inst. 33, 2099–2107 (2011)

    Article  Google Scholar 

  47. Yamashita, H., Shimada, M., Takeno, T.: A numerical study on flame stability at the transition point of jet diffusion flame. In: 26th Symp. Int. on Combustion, pp. 27–34. The Combustion Institute, Pittsburgh (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Hannebique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannebique, G., Sierra, P., Riber, E. et al. Large Eddy Simulation of Reactive Two-Phase Flow in an Aeronautical Multipoint Burner. Flow Turbulence Combust 90, 449–469 (2013). https://doi.org/10.1007/s10494-012-9416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9416-x

Keywords

Navigation