Skip to main content
Log in

Effect of Multilateral Jet Mixing on Stability and Structure of Turbulent Partially-Premixed Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

An experimental study was conducted to investigate the effects of multilateral jet mixing, using both three and four side-jets, on the structure and stability of turbulent partially-premixed flames. Particle Image Velocimetry and OH*-chemiluminescence were used to study the effects of geometry and operating conditions on the resulting flow-field and reaction zone structures, respectively. These effects were compared under varying ratios of side-jet to primary flow momentum, whilst keeping the bulk flow constant. It was found that the mixing regimes upstream of the nozzle exit affect the flame characteristics, i.e. an impinging regime is likely to generate a lifted flame whilst a backflow regime is likely to generate an attached flame. Unlike the 4 side-jets cases, the OH* images and v r m s profiles for the 3 side-jets cases show distinct asymmetry, with intense OH* and low velocity fluctuations on the opposite sides of the fuel injection. It was also found that the flow and scalar fields become independent of the upstream conditions, for both 3 and 4 side-jets, after one diameter downstream of the nozzle exit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Song, T. H., Viskanta, R.: Interaction of radiation with turbulence - application to a combustion system. J. Thermophys. Heat Transf. 1(1), 56–62 (1987). doi:10.2514/3.7

  2. Zimberg, M. J., Frankel, S. H., Fore, J. P., Sivathanu, Y. R.: A study of coupled turbulent mixing, soot chemistry and radiation effects using the linear eddy model. Combust. Flame 113(3), 454–469 (1998). doi:10.1016/S0010-2180(97)00175-2

    Article  Google Scholar 

  3. Han, D., Mungal, M. G.: Simultaneous measurements of velocity and ch distribution. part ii: deflected jet flames. Combust. Flame 133, 1–7 (2003). doi:10.1016/S0010-2180(02)00551-5

    Article  Google Scholar 

  4. Gutmark, E. J., Grinstein, F. F.: Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31, 239–272 (1999). doi:10.1146/annurev.fluid.31.1.239

    Article  Google Scholar 

  5. Peters, N., Williams, F. A.: Lift-off characteristics of turbulent diffusion jet flame. AIAA J. 21, 423–429 (1983). doi:10.2514/3.8089

    Article  MATH  Google Scholar 

  6. Lyons, K. M.: Towards an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog. Energy Combust. Sci. 33(2), 211–231 (2007). doi:10.1016/j.pecs.2006.11.001

    Article  Google Scholar 

  7. Masri, A. R.: Partial premixing and stratification in turbulent flames. Proc. Combust. Inst. 35, 1115–1136 (2015). doi:10.1016/j.proci.2014.08.032

    Article  Google Scholar 

  8. Meares, S., Masri, A. R.: A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures. Combust. Flame 161, 485–495 (2014). doi:10.1016/j.combustflame.2013.09.016

    Article  Google Scholar 

  9. Mansour, M. S.: A concentric flow conical nozzle burner for highly stabilized partially premixed flames. Combust. Sci. Technol. 152, 115–145 (2000). doi:10.1080/00102200008952130

    Article  Google Scholar 

  10. Barlow, R., Meares, S., Magnotti, G., Curcher, H., Masri, A. R.: Local extinction and near-field structure in piloted turbulent ch4/air jet flames with inhomogeneous inlets. Combust. Flame 162, 3516–3540 (2015). doi:10.1016/j.combustflame.2015.06.009

    Article  Google Scholar 

  11. Fric, T. F., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1–47 (1994). doi:10.1017/S0022112094003800

    Article  Google Scholar 

  12. Yuan, L. L., Street, R. L.: Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10, 2323 (1998). doi:10.1063/1.869751

    Article  Google Scholar 

  13. Huang, R. F., Chang, J. M.: The stability and visualized flame and flow structures of a combusting jet in cross flow. Combust. Flame. doi:10.1016/0010-2180(94)90241-0 (1994)

  14. Ben-Yakar, A., Hanson, R. K.: Experimental investigation of flame-holding capability of hydrogen transverse jet in supersonic cross-flow. Symp. (Int.) Combust. doi:10.1016/S0082-0784(98)80066-0 (1998)

  15. Holdeman, J. D., Liscinsky, D. S., Oechsle, V. L., Samuelsen, G. S., Smith, C. E.: Mixing of multiple jets with a confined subsonic crossflow: part 1-cylindrical duct. J. Eng. Gas Turbines Power 119, 852–862 (1997). doi:10.1115/1.2817065

    Article  Google Scholar 

  16. Leong, M. Y., Samuelsen, G. S., Holdeman, J. D.: Optimization of jet mixing into a rich, reacting crossflow. J. Propuls. Power 16(5), 729–735 (2000). doi:10.2514/2.5643

    Article  Google Scholar 

  17. New, T. H., Tay, W. L.: Effects of cross-stream radial injections on a round jet. J. Turbul. 7. doi:10.1080/14685240600847466 (2006)

  18. Thong, C. X., Dally, B. B., Birzer, C. H., Kalt, P. A. M., Hassan, E. R.: An experimental study on the near flow field of a round jet affected by upstrema multilateral side-jet. Exp. Thermal Fluid Sci. 82, 198–211 (2017). doi:10.1016/j.expthermflusci.2016.11.008

    Article  Google Scholar 

  19. Seidel, J. F., Pappert, C., New, T. H., Tsai, H. M.: Effects of multiple radial blowing around a circular jet. 43rd AIAA aerospace sciences meeting and exhibit (2005)

  20. Gutmark, E., Schadow, K. C., Parr, T. P., Hanson-Parr, D. M., Wilson, K. J.: Noncircular jets in combustion systems. Exp. Fluids 7(4), 248–258 (1989). doi:10.1007/BF00198004

    Article  Google Scholar 

  21. Kalt, P.A.M., Long, M.B.: Oma - image processing for mac os x. www.oma-x.org(2008)

  22. Dandy, D. S., Vosen, S. R.: Numerical and experimental studies of hydroxyl radical chemiluminescence in methane-air flames. Combust. Sci. Technol. doi:10.1080/00102209208951816 (1992)

  23. Lee, D. G., Santavicca, D. A.: Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. J. Propuls. Power 19(5), 735–750 (2003). doi:10.2514/2.6191

    Article  Google Scholar 

  24. Cashdollar, K. L., Zlochower, I. A., Green, G. M., Hertzberg, M.: Flammabilit of methane, propage and hydrogen gases. J. Loss Prev. Process Ind. 13(3), 327–340 (2000)

    Article  Google Scholar 

  25. Gautam, T.: Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41(1-2), 17–29 (1984). doi:10.1080/00102208408923819

    Article  Google Scholar 

  26. Barlow, R., Frank, J.: Piloted ch4/air flames c, d, e, f - release 2.1. Sandia National Laboratories (2007)

  27. Thong, C. X., Kalt, P. A. M., Dally, B. B., Birzer, C. H.: Flow dynamics of multi-lateral jets injection into a round pipe flow. Exp. Fluids 56(15). doi:10.1007/s00348-014-1884-4 (2015)

  28. Watson, K. A., Lyons, K. M., Donbar, J. M., Carter, C. D.: On scalar dissipation and partially premixed flame propagation. Combust. Sci. Technol. 175(4), 649–664 (2003). doi:10.1080/00102200302393

    Article  Google Scholar 

  29. Shy, S. S., Lin, W. J., Wei, J. C.: An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion. Proc. R. Soc. A: Math. Phys. Eng. Sci. 456, 1997–2019 (2000). doi:10.1098/rspa.2000.0599

    Article  Google Scholar 

  30. Tsunoda, H., Saruta, M.: Planar laser-induced fluorescence study on the diffusion field of a round jet in a uniform counter-flow. J. Turbul. 4. doi:10.1088/1468-5248/4/1/013 (2003)

  31. Yoda, M., Fiedler, H. E.: The round jet in a uniform counterflow: flow visualizationand mean concentration measurements. Exp. Fluids 21(6), 427–436 (1996). doi:10.1007/BF00189045

    Article  Google Scholar 

  32. Chan, C. H. C., Lam, K. M.: Centreline velocity decay of a circular jet in a counterflowing stream. Phys. Fluids (1998)

  33. Birzer, C. H., Kelso, R. M., Dally, B. B.: Flame structure of jets in confined cross-flows. In: Proceedings of the australian combustion symposium (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. X. Thong.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thong, C., Dally, B., Medwell, P. et al. Effect of Multilateral Jet Mixing on Stability and Structure of Turbulent Partially-Premixed Flames. Flow Turbulence Combust 100, 225–247 (2018). https://doi.org/10.1007/s10494-017-9838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9838-6

Keywords

Navigation