Skip to main content
Log in

Nonlinear modal coupling in a T-shaped piezoelectric resonator induced by stiffness hardening effect

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear modal coupling in a T-shaped piezoelectric resonator, when the former two natural frequencies are away from 1:2, is studied. Experimentally sweeping up the exciting frequency shows that the horizontal beam exhibits a nonlinear hardening behavior. The first primary resonance of the vertical beam, owing to modal coupling, exhibits an abrupt amplitude increase, namely the Hopf bifurcation. The frequency comb phenomenon induced by modal coupling is measured experimentally. A Duffing-Mathieu coupled model is theoretically introduced to derive the conditions of the modal coupling and frequency comb phenomenon. The results demonstrate that the modal coupling results from nonlinear stiffness hardening and is strictly dependent on the loading range and sweeping form of the driving voltage and the frequency of the piezoelectric patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KUMAR, V., BOLEY, J. W., YANG, Y. S., EKOWALUYO, H., MILLER, J. K., CHIU, G. T. C., and RHOADS, J. F. Bifurcation-based mass sensing using piezoelectrically-actuated micro-cantilevers. Applied Physics Letters, 98, 153510 (2011)

    Article  Google Scholar 

  2. YOUNIS, M. I. and ALSALEEM, F. Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. Journal of Computational and Nonlinear Dynamics, 4, 21010 (2009)

    Article  Google Scholar 

  3. WANG, Y., ZHAO, C., WANG, C., CERICA, D., BAIJOT, M., XIAO, Q., STOUKATCH, S., and KRAFT, M. A mass sensor based on 3-DOF mode localized coupled resonator under atmospheric pressure. Sensors and Actuators A-Physical, 279, 254–262 (2018)

    Article  Google Scholar 

  4. ALGHAMDI, M., KHATER, M., STEWART, K. M. E., ALNEAMY, A., ABDEL-RAHMAN, E. M., and PENLIDIS, A. Dynamic bifurcation MEMS gas sensors. Journal of Micromechanics and Microengineering, 29, 015005 (2019)

    Article  Google Scholar 

  5. NAJAR, F., GHOMMEM, M., and ABDEL-RAHMAN, E. M. Arch microbeam bifurcation gas sensors. Nonlinear Dynamics, 104, 1–18 (2021)

    Article  Google Scholar 

  6. LEUS, V. and ELATA, D. On the dynamic response of electrostatic MEMS switches. Journal of Microelectromechanical Systems, 17, 236–243 (2008)

    Article  Google Scholar 

  7. HASAN, M. H., ALSALEEM, F. M., and OUAKAD, H. M. Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators. Journal of Micromechanics and Microengineering, 28, 065007 (2018)

    Article  Google Scholar 

  8. ZOU, H. X., ZHANG, W. M., LI, W. B., HU, K. M., WEI, K. X., PENG, Z. K., and MENG, G. A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach. Applied Physics Letters, 110, 163904 (2017)

    Article  Google Scholar 

  9. XIE, Z. Q., HUANG, B. R., FAN, K. Q., ZHOU, S. X., and HUANG, W. B. A magnetically coupled nonlinear T-shaped piezoelectric energy harvester with internal resonance. Smart Materials and Structures, 28, 11LT01 (2019)

    Article  Google Scholar 

  10. HAJJAJ, A. Z., JABER, N., HAFIZ, M. A. A., ILYAS, S., and YOUNIS, M. I. Multiple internal resonances in MEMS arch resonators. Physics Letters A, 384, 3393–3398 (2018)

    Article  Google Scholar 

  11. ALKADDOUR, M., GHOMMEM, M., and NAJAR, F. Nonlinear analysis and effectiveness of weakly coupled microbeams for mass sensing applications. Nonlinear Dynamics, 104, 1–15 (2021)

    Article  Google Scholar 

  12. ELSHURAFA, A. M., KHIRALLAH, K., TAWFIK, H. H., EMIRA, A., ABDEL-AZIZ, A. K. S., and SEDKY, S. M. Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators. Journal of Microelectromechanical Systems, 20, 943–958 (2011)

    Article  Google Scholar 

  13. HAJJAJ, A. Z., JABER, N., ILYAS, S., ALFOSAIL, F., and YOUNIS, M. I. Linear and nonlinear dynamics of micro and nano-resonators: review of recent advances. International Journal of Non-Linear Mechanics, 119, 103328 (2019)

    Article  Google Scholar 

  14. WANG, X., XIAO, D. B., ZHOU, Z. L., CHEN, Z. H., WU, X. Z., and LI, S. Y. Support loss for beam undergoing coupled vibration of bending and torsion in rocking mass resonator. Sensors and Actuators A-Physical, 171, 199–206 (2011)

    Article  Google Scholar 

  15. XIE, Z. Q., WANG, T., KWUIMY, C. A. K., SHAO, Y., and HUANG, W. B. Design, analysis and experimental study of a T-shaped piezoelectric energy harvester with internal resonance. Smart Materials and Structures, 28, 085027 (2019)

    Article  Google Scholar 

  16. LABADZE, G., DUKALSKI, M., and BLANTER, Y. M. Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator. Physica E: Low-Dimensional Systems and Nanostructures, 76, 181–186 (2016)

    Article  Google Scholar 

  17. SIEVERS, A. J. and TAKENO, S. Intrinsic localized modes in anharmonic crystals. Physical Review Letters, 61, 970–973 (1988)

    Article  Google Scholar 

  18. MATHENY, M. H., GRAU, M., VILLANUEVA, L. G., KARABALIN, R. B., CROSS, M. C., and ROUKES, M. L. Phase synchronization of two anharmonic nanomechanical oscillators. Physical Review Letters, 112, 014101 (2014)

    Article  Google Scholar 

  19. SANSA, M., SAGE, E., BULLARD, E. C., GÉLY, M., ALAVA, T., COLINET, E., NAIK, A. K., VILLANUEVA, L. G., DURAFFOURG, L., ROUKES, M. L., JOURDAN, G., and HENTZ, S. Frequency fluctuations in silicon nanoresonators. Nature Nanotechnology, 11, 552–558 (2016)

    Article  Google Scholar 

  20. ZHANG, T. Y., REN, J., WEI, X. Y., JIANG, Z. D., and HUAN, R. H. Nonlinear coupling of flexural mode and extensional bulk mode in micromechanical resonators. Applied Physics Letters, 109, 22410 (2016)

    Google Scholar 

  21. LI, L., LIU, H. B., SHAO, M. Y., and MA, C. C. A novel frequency stabilization approach for mass detection in nonlinear mechanically coupled resonant sensors. Micromachines, 12, 178 (2021)

    Article  Google Scholar 

  22. XIA, C., WANG, D. F., ONO, T., ITOH, T., and MAEDA, R. A mass multi-warning scheme based on one-to-three internal resonance. Mechanical Systems and Signal Processing, 142, 106784 (2020)

    Article  Google Scholar 

  23. WANG, X. F., WEI, X. Y., PU, D., and HUAN, R. H. Single-electron detection utilizing coupled nonlinear microresonators. Microsystems & Nanoengineering, 6, 327–333 (2020)

    Google Scholar 

  24. ILYAS, S., CHAPPANDA, K., and YOUNIS, M. I. Exploiting nonlinearities of micro-machined resonators for filtering applications. Applied Physics Letters, 110, 1–4 (2017)

    Article  Google Scholar 

  25. ATABAK, S., BEHRAAD, B., and FARID, G. Analytical modeling and experimental verification of nonlinear mode coupling in a decoupled tuning fork microresonator. Journal of Microelectromechanical Systems, 3, 1–9 (2018)

    Google Scholar 

  26. RAMINI, A. H., HAJJAJ, A. Z., and YOUNIS, M. I. Tunable resonators for nonlinear modal interactions. Scientific Reports, 6, 34717 (2016)

    Article  Google Scholar 

  27. KILINC, Y., KARAKAN, M. A., LEBLEBICI, Y., HANAY, M. S., and ALACA, B. E. Observation of coupled mechanical resonance modes within suspended 3D nanowire arrays. Nanoscale, 12, 22042 (2020)

    Article  Google Scholar 

  28. LI, L., ZHANG, Q. C., WANG, W., and HAN, J. X. Nonlinear coupled vibration of electrostatically actuated clamped-clamped microbeams under higher-order modes excitation. Nonlinear Dynamics, 90, 1593–1606 (2017)

    Article  Google Scholar 

  29. BAGUET, S., NGUYEN, V. N., GRENAT, C., LAMARQUE, C. H., and DUFOUR, R. Nonlinear dynamics of micromechanical resonator arrays for mass sensing. Nonlinear Dynamics, 95, 1203–1220 (2019)

    Article  Google Scholar 

  30. XIA, C., WANG, D. F., ONO, T., ITOH, T., and ESASHI, M. Internal resonance in coupled oscillators, Part I: a double amplification mass sensing scheme without Duffing nonlinearity. Mechanical Systems and Signal Processing, 159, 107886 (2021)

    Article  Google Scholar 

  31. LIU, Y. F., QIN, Z. Y., and CHU, F. L. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance. Applied Mathematics and Mechanics (English Edition), 42(6), 805–818 (2021) https://doi.org/10.1007/s10483-021-2740-7

    Article  MathSciNet  MATH  Google Scholar 

  32. LI, L., HAN, J. X., ZHANG, Q. C., LIU, C., and GUO, Z. Nonlinear dynamics and parameter identification of electrostatically coupled resonators. International Journal of Non-Linear Mechanics, 110, 104–114 (2019)

    Article  Google Scholar 

  33. VYAS, A., PEROULIS, D., and BAJAJ, A. K. A microresonator design based on nonlinear 1:2 internal resonance in flexural structural modes. Journal of Microelectromechanical Systems, 18, 744–762 (2009)

    Article  Google Scholar 

  34. WU, Y. P., JI, H. L., QIU, J. H., and HAN, L. A 2-degree-of-freedom cubic nonlinear piezoelectric harvester intended for practical low-frequency vibration. Sensors and Actuators A-Physical, 264, 1–10 (2017)

    Article  Google Scholar 

  35. YAN, Z., TAHA, H. E., and TAN, T. Nonlinear characteristics of an autoparametric vibration system. Journal of Sound and Vibration, 390, 1–22 (2017)

    Article  Google Scholar 

  36. YOUNIS, M. I., ABDEL-RAHMAN, E. M., and NAYFEH, A. A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical Systems, 12, 672–680 (2003)

    Article  Google Scholar 

  37. YU, T. J., Zhang, W., and YANG, X. D., Nonlinear dynamics of flexible L-shaped beam based on exact modes truncation. International Journal of Bifurcation and Chaos, 27, 1750035 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Zhang.

Additional information

Citation: LI, L., LIU, H. B., HAN, J. X., and ZHANG, W. M. Nonlinear modal coupling in a T-shaped piezoelectric resonator induced by stiffness hardening effect. Applied Mathematics and Mechanics (English Edition), 43(6), 777–792 (2022) https://doi.org/10.1007/s10483-022-2861-6

Project supported by the National Natural Science Foundation of China (No. 11902182), the Program of Shanghai Academic/Technology Research Leader of China (No. 19XD1421600), the China Postdoctoral Science Foundation (No. 2019M651485), the Natural Science Foundation of Shandong Province of China (No. ZR2019BA001), and the Natural Science Foundation of Tianjin of China (No. 20JCQNJC01070)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, H., Han, J. et al. Nonlinear modal coupling in a T-shaped piezoelectric resonator induced by stiffness hardening effect. Appl. Math. Mech.-Engl. Ed. 43, 777–792 (2022). https://doi.org/10.1007/s10483-022-2861-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2861-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation