Skip to main content
Log in

Effects of variable viscosity and temperature modulation on linear Rayleigh-Bénard convection in Newtonian dielectric liquid

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The linear Rayleigh-Bénard electro-convective stability of the Newtonian dielectric liquid is determined theoretically subject to the temperature modulation with time. A perturbation method is used to compute the critical Rayleigh number and the wave number. The critical Rayleigh number is calculated as a function of the frequency of modulation, the temperature-dependent variable viscosity, the electric field dependent variable viscosity, the Prandtl number, and the electric Rayleigh number. The effects of all three cases of modulations are established to delay or advance the onset of the convection process. In addition, how the effect of variable viscosity controls the onset of convection is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

wave number

D :

electric displacement

E :

electric field

E 0 :

reference electric field

g :

gravitational acceleration, (0, 0,−g)

L :

electric Rayleigh number

P :

dielectric polarization

Pr :

Prandtl number

Ra c :

critical Rayleigh number

p :

effective pressure

q :

velocity vector, (u, v,w)

T :

temperature

T 0 :

reference temperature

∇:

vector differential operator

V T :

temperature dependent variable viscosity

V E :

electric field dependent variable viscosity

e :

positive free charge

α :

coefficient of thermal expansion

β :

small amplitude of the temperature modulation

κ 1 :

thermal diffusivity

κ :

thermal conductivity

φ :

electric potential

ϕ :

phase angle

ω :

modulation frequency

μ :

temperature and electric field strength dependent variable viscosity

ρ :

fluid density

ρ 0 :

reference density at T = T0

ε 0 :

electric permittivity

ε r :

relative permittivity or dielectric constant;

χ e :

electric susceptibility

b:

basic state

c:

critical quantity

0:

reference value

′:

dimensionless quantity

T:

transpose

∗:

dimensionless quantity

References

  1. GROSS, M. J. and PORTER, J. E. Electrically induced convection in dielectric liquids. nature, 212, 1343–1345 (1966)

    Article  Google Scholar 

  2. GROSS, M. J. Mantles of the Earth and Terrestrial Planets, Wiley, New York (1967)

    Google Scholar 

  3. VENEZIAN, G. Effect of modulation on the onset of thermal convection. Jounal of Fluid Mechanics, 35, 243–254 (1969)

    Article  Google Scholar 

  4. ROSENBLAT, S. and HERBERT, D. M. Low frequency modulation of thermal instability. Journal of Fluid Mechanics, 43, 385–398 (1970)

    Article  Google Scholar 

  5. ROSENBLAT, S. and TANAKA, G. A. Modulation of thermal convection instability. Physics of Fluids, 14, 1319–1322 (1971)

    Article  Google Scholar 

  6. NIELD, D. A. The onset of transient convection instability. Journal of Fluid Mechanics, 71, 441–454 (1975)

    Article  Google Scholar 

  7. BRADLEY, R. Overstable electroconvective instabilities. Quarterly Journal of Mechanics and Applied Mathematics, 31, 381–390 (1978)

    Article  Google Scholar 

  8. SIDDHESHWAR, P. G. and ANNAMMA, A. Effect of temperature/gravity modulation on the onset of magneto-convection in electrically conducting fluids with internal angular momentum. Journal of Magnetism and Magnetic Materials, 219(2), 153–162 (2000)

    Article  Google Scholar 

  9. SINGH, J. and BAJAJ, R. Temperature modulation in Rayleigh-Bénard convection. ANZIAM Journal, 50, 231–245 (2008)

    Article  MathSciNet  Google Scholar 

  10. SIDDHESHWAR, P. G. and ANNAMMA, A. Rayleigh-Bénard convection in a dielectric liquid: time periodic body force. PAMM, 7(1), 2100083–2100084 (2008)

    Article  Google Scholar 

  11. SIDDHESHWAR, P. G. and ANNAMMA, A. Rayleigh-Bénard convection in a dielectric liquid: imposed time periodic boundary temperatures. Chamchuri Journal of Mathematics, 1(2), 105–121 (2009)

    MathSciNet  MATH  Google Scholar 

  12. FINUCANE, R. G. and KELLY, R. E. Onset of instability in a fluid layer heated sinusoidaly from below. Journal of Heat and Mass Transfer, 131, 71–85 (2009)

    MATH  Google Scholar 

  13. MALKUS, W. V. R. and VERONIS, G. Finite amplitude cellular convection. Journal of Fluid Mechanics, 4, 225–260 (1958)

    Article  MathSciNet  Google Scholar 

  14. RUDRAIAH, N. and GAYATHRI, M. S. Effect of thermal modulation on the onset of electrother-moconvection in a dielectric fluid saturated porous medium. Journal of Heat Transfer, 131, 101009 (2009)

    Article  Google Scholar 

  15. SIDDHESHWAR, P. G., BHADAURIA, B. S., MISHRA, P., and ATUL, K. S. Study of heat transport by stationary magnetoconvection in a Newtonian liquid under temperature or gravity modulation using Ginzburg-Landau model. International Journal of Non-Linear Mechanics, 47, 418–425 (2012)

    Article  Google Scholar 

  16. SIDDHESHWAR, P. G. and RADHAKRISHNA, D. Linear and nonlinear electroconvection under AC electric field. Communications in Nonlinear Science and Numerical Simulation, 17, 2883–2895 (2012)

    Article  MathSciNet  Google Scholar 

  17. PUNEET, K., SINGH, J., and BAJAJ, R. Rayleigh-Bénard convection with two-frequency temperature modulation. American Phyical Society, 93, 043111–043119 (2016)

    Google Scholar 

  18. KIRAN, P. and NARASIMHULU, Y. Weak nonlinear thermal instability in a dielectric fluid layer under temperature modulation. IJARTET, 5(12), 470–476 (2018)

    Google Scholar 

  19. SADAF, H. Bio-fluid flow analysis based on heat tranfer and variable viscosity. Applied Mathematics and Mechanics (English Edition), 40(7), 1029–1040 (2019) https://doi.org/10.1007/s10483-019-2499-8

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bhavya.

Additional information

Citation: SIDDHESHWAR, P. G., UMA, D., and BHAVYA, S. Effects of variable viscosity and temperature modulation on linear Rayleigh-B´enard convection in Newtonian dielectric liquid. Applied Mathematics and Mechanics (English Edition), 40(11), 1601–1614 (2019) https://doi.org/10.1007/s10483-019-2537-9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddheshwar, P.G., Uma, D. & Bhavya, S. Effects of variable viscosity and temperature modulation on linear Rayleigh-Bénard convection in Newtonian dielectric liquid. Appl. Math. Mech.-Engl. Ed. 40, 1601–1614 (2019). https://doi.org/10.1007/s10483-019-2537-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2537-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation