Skip to main content
Log in

Effects of Variable Viscosity and Internal Heat Generation on Rayleigh–Bénard Convection in Newtonian Dielectric Liquid

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The onset of Rayleigh–Bénard convection of variable-viscosity Newtonian dielectric liquid confined between two parallel plates is subject to free-free isothermal boundary condition. The combined and individual effects of temperature-dependent and electric-field-dependent variable-viscosity along with the internal heat generation are studied using the higher order Galerkin technique. This theoretical study shows that even a mild temperature-dependent variable-viscosity destabilizes the system and the electric-field-dependent variable-viscosity stabilizes the system both in the absence/presence of heat source/sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

Not applicable.

Abbreviations

a :

Wave number

\(\vec {D}\) :

Electric displacement

\(\vec {E}\) :

Electric field

\(\vec {E_{0}}\) :

Reference electric field

g :

Gravitational acceleration (0, 0, − g)

\(\vec {P}\) :

Dielectric polarization

q :

Velocity vector components (u, v, w)

e :

Positive free charge

p :

Effective pressure

T :

Temperature

\(T_{0}\) :

Reference temperature

\(V_T\) :

Temperature dependent variable viscosity

\(V_E\) :

Electric field dependent variable viscosity

Tr :

Transpose

\(R_I\) :

Internal Rayleigh number

t :

Time

\( \alpha \) :

Thermal expansion coefficient

\( \epsilon _{0}\) :

Electric permittivity

\( \epsilon _{r}\) :

Relative permittivity

\( \kappa _{1} \) :

Thermal conductivity

\( \phi \) :

Electric potential

\(\mu \) :

Temperature and electric field dependent viscosity

\(\rho \) :

Fluid density

\(\rho _0 \) :

Reference density at \(T=T_{0}\)

\(\chi _{e}\) :

Electric susceptibility

b :

Basic state

c :

Critical quantity

\('\) :

Dimensional quantity

*:

Dimensionless quantity

References

  1. Hughes, W.F., Young, F.J.: Electromagnetodynamics of Fluids. Wiley, New York (1966)

    Google Scholar 

  2. Turnbull, R.J.: Electroconvective instability with a stabilizing temperature gradient. I. Theory. Phys. Fluids 11, 2588–2596 (1968a)

    Article  MathSciNet  Google Scholar 

  3. Turnbull, R.J.: Electroconvective instability with a stabilizing temperature gradient. II. Experimental results. Phys. Fluids 11, 2597–2612 (1968b)

    Article  MathSciNet  Google Scholar 

  4. Turnbull, R.J.: Effect of dielectrophoretic forces on the Bénard instability. Phys. Fluids 12, 1809–1815 (1969)

    Article  Google Scholar 

  5. Bradley, R.: Overstable electroconvective instabilities. Q. J. Mech. Appl. Math. 31, 381–390 (1978)

    Article  Google Scholar 

  6. Takashima, M., Ghosh, A.K.: Electrohydrodynamic instability in a viscoelastic liquid layer. J. Phys. Soc. Jpn. 47, 1717–1722 (1979)

    Article  Google Scholar 

  7. Castellanos, A., Velarde, M.G.: Electrohydrodynamic stability in the presence of a thermal gradient. Phy. Fluids 24, 1784–1786 (1981)

    Article  Google Scholar 

  8. Melcher, J.R.: Continuum Electromechanics. M. I. T. Press, Cambridge (1981)

    Google Scholar 

  9. Takashima, M., Hamabata, H.: Stability of natural convection in a vertical layer of dielectric fluid in the presence of a horizontal ac electric field. J. Phys. Soc. Jpn. 149, 1728–1736 (1984)

    Article  Google Scholar 

  10. Ko, H.J., Kim, M.U.: Electrohydrodynamic convective instability in a horizontal fluid layer with temperature gradient. J. Phys. Soc. Jpn. 57, 1650–1661 (1988)

    Article  Google Scholar 

  11. Nield, D.A.: The effect of temperature-dependent viscosity on the onset of convection in a saturated porous medium. ASME J. Heat Transf. 118, 803–805 (1996)

    Article  Google Scholar 

  12. Chamkha, A.J.: Effects of heat generation/absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface. Int. J. Numer. Methods Fluid Flow 10, 432–439 (2000)

    Article  Google Scholar 

  13. Othman, M.I.A., Sweilam, N.H.: Electrohydrodynamic instability in a horizontal viscoelastic fluid layer in the presence of internal heat generation. Can. J. Phys. 80, 697–705 (2002)

    Article  Google Scholar 

  14. Siddheshwar, P.G.: Oscillatory convection in viscoelastic, ferromagnetic/dielectric liquids. Int. J. Mod. Phys. B. 16(17–18), 2629–2635 (2002)

    Article  Google Scholar 

  15. Shobha, B.: Effect of variable viscosity on free convection over a non-isothermal axisymmetric body in a porous medium with internal heat generation. Acta Mech. 169, 187–194 (2004)

    Article  Google Scholar 

  16. Siddheshwar, P.G., Annamma, A.: Rayleigh–Bénard convection in a dielectric liquid: time periodic body force. PAMM 7(1), 2100083–2100084 (2007)

    Article  Google Scholar 

  17. Shivakumara, I.S., Nagashree, M.S., Hemalatha, K.: Electroconvective instability in a heat generating dielectric fluid layer. Int. Commun. Heat Mass Transf. 34, 1041–1047 (2007)

    Article  Google Scholar 

  18. Siddheshwar, P.G., Annamma, A.: Rayleigh–Bénard convection in a dielectric liquid: imposed time periodic boundary temperatures. Chamchuri J. Math. 1(2), 105–121 (2009)

    MathSciNet  MATH  Google Scholar 

  19. He, J.H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350(1–2), 87–88 (2006)

    Article  MathSciNet  Google Scholar 

  20. Siddheshwar, P.G., Ramachandramurty, V., Uma, D.: Rayleigh–Bénard and Marangoni magnetoconvection in Newtonian liquid with thermorheological effects. Int. J. Eng. Sci. 49, 1078–1094 (2011)

    Article  Google Scholar 

  21. Siddheshwar, P.G., Radhakrishna, D.: Linear and nonlinear electroconvection under AC electric field. J. Commun. Nonlinear Sci. Numer. Simul. 17, 2883–2895 (2012)

    Article  MathSciNet  Google Scholar 

  22. Siddheshwar, P.G., Revathi, B.R.: Effect of gravity modulation on weakly nonlinear stability of stationary convection in a dielectric liquid. World Acad. Sci. Eng. Technol. 7(1), 119–124 (2013)

    Google Scholar 

  23. Maruthamanikandan, S., Smita, S.N.: Convective heat transfer in Maxwell–Cattaneo dielectric fluids. IJCER 3, 347–355 (2013)

    Google Scholar 

  24. Sekhar, G.N., Jayalatha, G., Prakash, R.: Thermal convection in variable viscosity ferromagnetic liquids with heat source. Int. J. Appl. Comput. Math. 3(4), 3539–3559 (2017)

    Article  MathSciNet  Google Scholar 

  25. Maria, T., Sangeetha, G.: Effect of gravity modulation and internal heat generation on Rayleigh–Bénard convection in couple stress fluid with Maxwell–Cattaneo law. Int. J. Appl. Eng. Res. 13, 2688–2693 (2018)

    Google Scholar 

  26. Siddheshwar, P.G., Uma, D., Bhavya, S.: Effects of variable viscosity and temperature modulation on linear Rayleigh–Bénard convection in Newtonian dielectric liquid. Appl. Math. Mech. (English Edition) 40(11), 1601–1614 (2019)

    Article  MathSciNet  Google Scholar 

  27. Siddheshwar, P.G., Uma, D., Bhavya Shivaraj.: Linear and non-linear stability of thermal convection in Newtonian dielectric liquid with field dependent viscosity. Eur. Phys. J. Plus 135(2), 1–15 (2020)

Download references

Acknowledgements

Thanks are extended to the two reviewers and the Editor for providing helpful suggestions for bringing the paper to the present form.

Funding

There was no funding support for the work reported in the paper.

Author information

Authors and Affiliations

Authors

Contributions

PGS formulated the problem, helped in the research methodology and the writing of the paper, BSR worked out the paper, did the computations and participated in the finalization of the paper, DU participated in the preparation of various versions of the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bhavya Shivaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivaraj, B., Siddheshwar, P.G. & Uma, D. Effects of Variable Viscosity and Internal Heat Generation on Rayleigh–Bénard Convection in Newtonian Dielectric Liquid. Int. J. Appl. Comput. Math 7, 119 (2021). https://doi.org/10.1007/s40819-021-01060-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01060-z

Keywords

Navigation