Skip to main content
Log in

Instability of functionally graded micro-beams via micro-structure-dependent beam theory

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses on the buckling behaviors of a micro-scaled bi-directional functionally graded (FG) beam with a rectangular cross-section, which is now widely used in fabricating components of micro-nano-electro-mechanical systems (MEMS/NEMS) with a wide range of aspect ratios. Based on the modified couple stress theory and the principle of minimum potential energy, the governing equations and boundary conditions for a micro-structure-dependent beam theory are derived. The present beam theory incorporates different kinds of higher-order shear assumptions as well as the two familiar beam theories, namely, the Euler-Bernoulli and Timoshenko beam theories. A numerical solution procedure, based on a generalized differential quadrature method (GDQM), is used to calculate the results of the bi-directional FG beams. The effects of the two exponential FG indexes, the higher-order shear deformations, the length scale parameter, the geometric dimensions, and the different boundary conditions on the critical buckling loads are studied in detail, by assuming that Young’s modulus obeys an exponential distribution function in both length and thickness directions. To reach the desired critical buckling load, the appropriate exponential FG indexes and geometric shape of micro-beams can be designed according to the proposed theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BIAN, Z., CHEN, W., LIM, C., and ZHANG, N. Analytical solutions for single and multi-span functionally graded plates in cylindrical bending. International Journal of Solids and Structures, 42(24), 6433–6456 (2005)

    Article  MATH  Google Scholar 

  2. WU, C., KAHN, M., and MOY, W. Piezoelectric ceramics with functional gradients: a new application in material design. Journal of the American Ceramic Society, 79(3), 809–812 (1996)

    Article  Google Scholar 

  3. LI, C. and WENG, G. Antiplane crack problem in functionally graded piezoelectric materials. ASME Journal of Applied Mechanics, 69(4), 481–488 (2002)

    Article  MATH  Google Scholar 

  4. BjHRIG-POLACZEK, A., FLECK, C., SPECK, T., SCH¨ULER, P., FISCHER, S., CALIARO, M., and THIELEN, M. Biomimetic cellular metals—using hierarchical structuring for energy absorption. Bioinspiration and Biomimetics, 11(4), 045002 (2016)

    Article  Google Scholar 

  5. STUDART, A. R., ERB, R. M., and LIBANORI, R. Bioinspired Hierarchical Composites, Springer, Switzerland, 287–318 (2015)

    Google Scholar 

  6. LIN, Y., WEI, C., OLEVSKY, E., and MEYERS, M. A. Mechanical properties and the laminate structure of arapaima gigas scales. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1145–1156 (2011)

    Article  Google Scholar 

  7. SUN, J., THIAN, E., FUH, J., CHANG, L., HONG, G., WANG, W., TAY, B., and WONG, Y. Fabrication of bio-inspired composite coatings for titanium implants using the micro-dispensing technique. Microsystem Technologies, 18(12), 2041–2051 (2012)

    Article  Google Scholar 

  8. LYU, C., LIM, C. W., and CHEN, W. Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. International Journal of Solids and Structures, 46(5), 1176–1185 (2009)

    Article  MATH  Google Scholar 

  9. NEJAD, M. Z. and HADI, A. Eringen’s non-local elasticity theory for bending analysis of bidirectional functionally graded Euler-Bernoulli nano-beams. International Journal of Engineering Science, 106, 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  10. KIANI, K. Stress analysis of thermally affected rotating nanoshafts with varying material properties. Acta Mechanica Sinica, 32(5), 813–827 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. KIANI, K. In-plane vibration and instability of nanorotors made from functionally graded materials accounting for surface energy effect. Microsystem Technologies, 23(5), 4853–4869 (2017)

    Article  Google Scholar 

  12. KIANI, K., GHAREBAGHI, S. A., and MEHRI, B. In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields. Structural Engineering and Mechanics, 61(1), 65–76 (2017)

    Article  Google Scholar 

  13. RAHAEIFARD, M., KAHROBAIYAN, M., and AHMADIAN, M. Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. 2009 International Design Engi- neering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 539–544 (2009)

    Google Scholar 

  14. QUE, L., PARK, J. S., and GIANCHANDANI, Y. B. Bent-beam electrothermal actuators.: single beam and cascaded devices. Journal of Microelectromechanical Systems, 10(2), 247–254 (2001)

    Article  Google Scholar 

  15. QUE, L., OTRADOVEC, L., OLIVER, A. D., and GIANCHANDANI, Y. B. Pulse and DCoperation lifetimes of bent-beam electrothermal actuators. The 14th IEEE International Conference on Micro Electro Mechanical Systems, IEEE, 570–573 (2001)

    Google Scholar 

  16. PARK, J. S., CHU, L. L., OLIVER, A. D., and GIANCHANDANI, Y. B. Bent-beam electrothermal actuators /: linear and rotary microengines. Journal of Microelectromechanical Systems, 10(2), 255–262 (2001)

    Article  Google Scholar 

  17. LIN, L. and LIN, S. H. Vertically driven microactuators by electrothermal buckling effects. Sensors and Actuators A: Physical, 71(1), 35–39 (1998)

    Article  Google Scholar 

  18. MICHAEL, A. and KWOK, C. Y. Design criteria for bi-stable behavior in a buckled multi-layered mems bridge. Journal of Micromechanics and Microengineering, 16(10), 2034–2043 (2006)

    Article  Google Scholar 

  19. CAO, A., KIM, J., and LIN, L. Bi-directional electrothermal electromagnetic actuators. Journal of Micromechanics and Microengineering, 17(5), 975–982 (2007)

    Article  Google Scholar 

  20. HASANYAN, D., BATRA, R., and HARUTYUNYAN, S. Pull-in instabilities in functionally graded microthermoelectromechanical systems. Journal of Thermal Stresses, 31(10), 1006–1021 (2008)

    Article  Google Scholar 

  21. MOHAMMADI-ALASTI, B., REZAZADEH, G., BORGHEEI, A. M., MINAEI, S., and HABIBIFAR, R. On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Composite Structures, 93(6), 1516–1525 (2011)

    Article  Google Scholar 

  22. ZHANG, J. and FU, Y. Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica, 47(7), 1649–1658 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. FLECK, N., MULLER, G., ASHBY, M., and HUTCHINSON, J. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42(2), 475–487 (1994)

    Article  Google Scholar 

  24. MCFARLAND, A. W. and COLTON, J. S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors. Journal of Micromechanics and Microengineering, 15(5), 1060–1067 (2005)

    Article  Google Scholar 

  25. HUANG, M., LI, Z., and TONG, J. The influence of dislocation climb on the mechanical behavior of polycrystals and grain size effect at elevated temperature. International Journal of Plasticity, 61, 112–127 (2014)

    Article  Google Scholar 

  26. LIU, D., HE, Y., TANG, X., DING, H., HU, P., and CAO, P. Size effects in the torsion of microscale copper wires: experiment and analysis. Scripta Materialia, 66(6), 406–409 (2012)

    Article  Google Scholar 

  27. DUNSTAN, D. and BUSHBY, A. The scaling exponent in the size effect of small scale plastic deformation. International Journal of Plasticity, 40, 152–162 (2013)

    Article  Google Scholar 

  28. ERINGEN, A. Nonlocal polar elastic continua. International Journal of Engineering Science, 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  29. ERINGEN, A. C. Theory of Micropolar Elasticity, Springer, Switzerland, 101–248 (1999)

    Google Scholar 

  30. FLECK, N. and HUTCHINSON, J. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, 41(12), 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. YANG, F., CHONG, A., LAM, D., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  32. LIM, C., ZHANG, G., and REDDY, J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. LI, L., LI, X., and HU, Y. Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science, 102, 77–92 (2016)

    Article  Google Scholar 

  34. EBRAHIMI, F., BARATI, M. R., and DABBAGH, A. A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. International Journal of Engineering Science, 107, 169–182 (2016)

    Article  Google Scholar 

  35. LI, C. A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries. Composite Structures, 118(1), 607–621 (2014)

    Article  Google Scholar 

  36. LI, C., LIM, C. W., YU, J., and ZENG, Q. Transverse vibration of pre-tensioned nonlocal nanobeams with precise internal axial loads. Science China Technological Sciences, 54(8), 2007–2013 (2011)

    Article  MATH  Google Scholar 

  37. LI, C., LIM, C. W., and YU, J. L. Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Materials and Structures, 20(20), 015023 (2010)

    Google Scholar 

  38. LI, C., YAO, L., CHEN, W., and LI, S. Comments on nonlocal effects in nano-cantilever beams. International Journal of Engineering Science, 87, 47–57 (2015)

    Article  Google Scholar 

  39. LI, C. Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semicontinuum model. International Journal of Mechanical Sciences, 82(5), 25–31 (2014)

    Article  Google Scholar 

  40. SHEN, J. P. and LI, C. A semi-continuum-based bending analysis for extreme-thin micro/nanobeams and new proposal for nonlocal differential constitution. Composite Structures, 172, 210–220 (2017)

    Article  Google Scholar 

  41. S¸IMS¸EK, M. and REDDY, J. N. Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. International Journal of Engineering Science, 64, 37–53 (2013)

    Article  MathSciNet  Google Scholar 

  42. SALAMAT-TALAB, M., NATEGHI, A., and TORABI, J. Static and dynamic analysis of thirdorder shear deformation FGmicro beam based on modified couple stress theory. International Journal of Mechanical Sciences, 57, 63–73 (2012)

    Article  Google Scholar 

  43. S¸IMS¸EK, M. and REDDY, J. N. A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Composite Structures, 101, 47–58 (2013)

    Article  Google Scholar 

  44. NATEGHI, A., SALAMAT-TALAB, M., REZAPOUR, J., and DANESHIAN, B. Size dependent buckling analysis of functionally graded micro-beams based on modified couple stress theory. Applied Mathematical Modelling, 36(10), 4971–4987 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. NGUYEN, H. X., NGUYEN, T. N., ABDEL-WAHAB, M., BORDAS, S., NGUYEN-XUAN, H., and VO, T. P. A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Computer Methods in Applied Mechanics and Engineering, 313, 904–940 (2017)

    Article  MathSciNet  Google Scholar 

  46. BABAEI, A., NOORANI, M. R. S., and GHANBARI, A. Temperature-dependent free vibration analysis of functionally graded micro-beams based on the modified couple stress theory. Microsys- tem Technologies, 23, 4599–4610 (2017)

    Article  Google Scholar 

  47. WANG, Y. G., SONG, H. F., LIN, W. H., and XU, L. Large deflection analysis of functionally graded circular microplates with modified couple stress effect. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(3), 981–991 (2017)

    Article  Google Scholar 

  48. AKG¨OZ, B. and CIVALEK, ¨O. Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Composites Part B: Engineering, 129, 77–87 (2017)

    Article  Google Scholar 

  49. SHENAS, A. G., ZIAEE, S., and MALEKZADEH, P. Vibrational behavior of rotating pre-twisted functionally graded microbeams in thermal environment. Composite Structures, 157, 222–235 (2016)

    Article  Google Scholar 

  50. KAHROBAIYAN, M., RAHAEIFARD, M., TAJALLI, S., and AHMADIAN, M. A strain gradient functionally graded Euler-Bernoulli beam formulation. International Journal of Engineering Science, 52, 65–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. SHEN, Y., CHEN, Y., and LI, L. Torsion of a functionally graded material. International Journal of Engineering Science, 109, 14–28 (2016)

    Article  MathSciNet  Google Scholar 

  52. SHAFIEI, N., KAZEMI, M., and GHADIRI, M. Nonlinear vibration of axially functionally graded tapered microbeams. International Journal of Engineering Science, 102, 12–26 (2016)

    Article  MathSciNet  Google Scholar 

  53. SHAFIEI, N., KAZEMI, M., SAFI, M., and GHADIRI, M. Nonlinear vibration of axially functionally graded non-uniform nanobeams. International Journal of Engineering Science, 106, 77–94 (2016)

    Article  Google Scholar 

  54. KHORSHIDI, M. A., SHARIATI, M., and EMAM, S. A. Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. International Jour- nal of Mechanical Sciences, 110, 160–169 (2016)

    Article  Google Scholar 

  55. YANG, W., YANG, F., and WANG, X. Coupling influences of nonlocal stress and strain gradients on dynamic pull-in of functionally graded nanotubes reinforced nano-actuator with damping effects. Sensors and Actuators A: Physical, 248, 10–21 (2016)

    Article  Google Scholar 

  56. EBRAHIMI, F. and BARATI, M. R. Wave propagation analysis of quasi-3D FGnanobeams in thermal environment based on nonlocal strain gradient theory. Applied Physics A, 122(9), 843–857 (2016)

    Article  Google Scholar 

  57. BARRETTA, R., FEO, L., LUCIANO, R., DE SCIARRA, F. M., and PENNA, R. Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation. Composites Part B: Engineering, 100, 208–219 (2016)

    Article  Google Scholar 

  58. DEHROUYEH-SEMNANI, A. M., MOSTAFAEI, H., and NIKKHAH-BAHRAMI, M. Free flexural vibration of geometrically imperfect functionally graded microbeams. International Journal of Engineering Science, 105, 56–79 (2016)

    Article  MathSciNet  Google Scholar 

  59. LI, L., HU, Y., and LING, L. Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Composite Structures, 133, 1079–1092 (2015)

    Article  Google Scholar 

  60. LI, X., LI, L., HU, Y., DENG, W., and DING, Z. A refined nonlocal strain gradient theory for assessing scaling-dependent vibration behavior of microbeams. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 11(3), 517–527 (2017)

    Google Scholar 

  61. TADI-BENI, Y. Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. Journal of Intelligent Material Systems and Struc- tures, 27(16), 2199–2215 (2016)

    Article  Google Scholar 

  62. RAZAVI, H., BABADI, A. F., and TADI-BENI, Y. Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Composite Structures, 160, 1299–1309 (2017)

    Article  Google Scholar 

  63. TADI-BENI, Y., MEHRALIAN, F., and ZEIGHAMPOUR, H. The modified couple stress functionally graded cylindrical thin shell formulation. Mechanics of Advanced Materials and Structures, 23(7), 791–801 (2016)

    Article  MATH  Google Scholar 

  64. TADI-BENI, Y. and MEHRALIAN, F. The effect of small scale on the free vibration of functionally graded truncated conical shells. Journal of Mechanics of Materials and Structures, 11(2), 91–112 (2016)

    Article  MathSciNet  Google Scholar 

  65. MEHRALIAN, F. and TADI-BENI, Y. Size-dependent torsional buckling analysis of functionally graded cylindrical shell. Composites Part B: Engineering, 94, 11–25 (2016)

    Article  Google Scholar 

  66. WANG, X. and LI, S. Free vibration analysis of functionally graded material beams based on Levinson beam theory. Applied Mathematics and Mechanics (English Edition), 37(7), 861–878 (2016) https://doi.org/10.1007/s10483-016-2094-9

    Article  MathSciNet  MATH  Google Scholar 

  67. SETOODEH, A., REZAEI, M., and ZENDEHDEL-SHAHRI, M. R. Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory. Applied Mathematics and Mechanics (English Edition), 37(6), 725–740 (2016) https://doi.org/10.1007/s10483-016-2085-6

    Article  MathSciNet  MATH  Google Scholar 

  68. WAN, Z. and LI, S. Thermal buckling analysis of functionally graded cylindrical shells. Applied Mathematics and Mechanics (English Edition), 38(8), 1059–1070 (2017) https://doi.org/10.1007/s10483-017-2225-7

    Article  MathSciNet  MATH  Google Scholar 

  69. KOLAHCHI, R. and MONIRI-BIDGOLI, A. M. Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes. Applied Mathematics and Mechanics (English Edition), 37(2), 265–274 (2016) https://doi.org/10.1007/s10483-016-2030-8

    Article  MathSciNet  Google Scholar 

  70. LI, X., LI, L., HU, Y., DING, Z., and DENG, W. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Composite Structures, 165, 250–265 (2017)

    Article  Google Scholar 

  71. LI, L. and HU, Y. Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science, 107, 77–97 (2016)

    Article  MathSciNet  Google Scholar 

  72. LI, L. and HU, Y. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. International Journal of Mechanical Sciences, 120, 159–170 (2017)

    Article  Google Scholar 

  73. LI, L. and HU, Y. Torsional vibration of bi-directional functionally graded nanotubes based on non-local elasticity theory. Composite Structures, 172, 242–250 (2017)

    Article  Google Scholar 

  74. STEINBERG, M. A. Materials for aerospace. Scientific American, 255(4), 66–72 (1986)

    Article  Google Scholar 

  75. LYU, C., CHEN,W., XU, R., and LIM, C.W. Semi-analytical elasticity solutions for bi-directional functionally graded beams. International Journal of Solids and Structures, 45(1), 258–275 (2008)

    Article  MATH  Google Scholar 

  76. NEMAT-ALLA, M. and NODA, N. Edge crack problem in a semi-infinite FGM plate with a bi-directional coeffcient of thermal expansion under two-dimensional thermal loading. Acta Me- chanica, 144(3), 211–229 (2000)

    Article  MATH  Google Scholar 

  77. NEMAT-ALLA, M. Reduction of thermal stresses by developing two-dimensional functionally graded materials. International Journal of Solids and Structures, 40(26), 7339–7356 (2003)

    Article  MATH  Google Scholar 

  78. NEMAT-ALLA, M., AHMED, K. I., and HASSAB-ALLAH, I. Elastic-plastic analysis of twodimensional functionally graded materials under thermal loading. International Journal of Solids and Structures, 46(14), 2774–2786 (2009)

    Article  MATH  Google Scholar 

  79. LEZGY-NAZARGAH, M. Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerospace Science and Technology, 45, 154–164 (2015)

    Article  Google Scholar 

  80. CHO, J. and HA, D. Optimal tailoring of 2D volume-fraction distributions for heat-resisting functionally graded materials using FDM. Computer Methods in Applied Mechanics and Engineering, 191(29), 3195–3211 (2002)

    Article  MATH  Google Scholar 

  81. QIAN, L. and BATRA, R. Design of bidirectional functionally graded plate for optimal natural frequencies. Journal of Sound and Vibration, 280(1), 415–424 (2005)

    Article  Google Scholar 

  82. NIE, G. and ZHONG, Z. Axisymmetric bending of two-directional functionally graded circular and annular plates. Acta Mechanica Solida Sinica, 20(4), 289–295 (2007)

    Article  Google Scholar 

  83. NIE, G. and ZHONG, Z. Dynamic analysis of multi-directional functionally graded annular plates. Applied Mathematical Modelling, 34(3), 608–616 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  84. LYU, C., LIM, C. W., and CHEN, W. Semi-analytical analysis for multi-directional functionally graded plates: 3D elasticity solutions. International Journal for Numerical Methods in Engineer- ing, 79(1), 25–44 (2009)

    Article  MATH  Google Scholar 

  85. DENG, H. and CHENG, W. Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams. Composite Structures, 141, 253–263 (2016)

    Article  Google Scholar 

  86. PYDAH, A. and BATRA, R. Shear deformation theory using logarithmic function for thick circular beams and analytical solution for bi-directional functionally graded circular beams. Composite Structures, 172, 45–60 (2017)

    Article  Google Scholar 

  87. PYDAH, A. and SABALE, A. Static analysis of bi-directional functionally graded curved beams. Composite Structures, 160, 867–876 (2017)

    Article  Google Scholar 

  88. NGUYEN, D. K., NGUYEN, Q. H., TRAN, T. T., and BUI, V. T. Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load. Acta Mechanica, 228(1), 145–155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  89. S¸IMS¸EK, M. Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions. Composite Structures, 149, 304–314 (2016)

    Article  Google Scholar 

  90. S¸IMS¸EK, M. Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Composite Structures, 133, 968–978 (2015)

    Article  Google Scholar 

  91. NEJAD, M. Z., HADI, A., and RASTGOO, A. Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory. International Journal of Engineering Science, 103, 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  92. NEJAD, M. Z. and HADI, A. Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams. International Journal of Engineering Science, 105, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  93. SHAFIEI, N. and KAZEMI, M. Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams. Aerospace Science and Technology, 66, 1–11 (2017)

    Article  Google Scholar 

  94. CHEN, X., MA, L., ZHENG, Y., LI, X., and LEE, D. W. The influences of transverse loads on electrothermal post-buckling microbeams. Journal of Micromechanics and Microengineering, 22(1), 015011 (2011)

    Article  Google Scholar 

  95. REDDY, J. N. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, 51(4), 745–752 (1985)

    Article  MATH  Google Scholar 

  96. TOURATIER, M. An effcient standard plate theory. International Journal of Engineering Science, 29(8), 901–916 (1991)

    Article  MATH  Google Scholar 

  97. KARAMA, M., AFAQ, K., and MISTOU, S. Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. International Journal of Solids and Structures, 40(6), 1525–1546 (2003)

    Article  MATH  Google Scholar 

  98. SOLDATOS, K. P. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mechanica, 94, 195–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  99. AYDOGDU, M. A new shear deformation theory for laminated composite plates. Composite Struc- tures, 89(1), 94–101 (2009)

    Article  Google Scholar 

  100. TOUNSI, A., SEMMAH, A., and BOUSAHLA, A. A. Thermal buckling behavior of nanobeams using an effcient higher-order nonlocal beam theory. Journal of Nanomechanics and Microme- chanics, 3(3), 37–42 (2013)

    Article  Google Scholar 

  101. BOURADA, M., KACI, A., HOUARI,M. S. A., and TOUNSI, A. A new simple shear and normal deformations theory for functionally graded beams. Steel and Composite Structures, 18(2), 409–423 (2015)

    Article  Google Scholar 

  102. ZEMRI, A., HOUARI, M. S. A., BOUSAHLA, A. A., and TOUNSI, A. A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Structural Engineering and Mechanics, 54(4), 693–710 (2015)

    Article  Google Scholar 

  103. EBRAHIMI, F. and BARATI, M. R. A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures. International Journal of Engineering Science, 107, 183–196 (2016)

    Article  Google Scholar 

  104. NGUYEN, T. K., NGUYEN, T. P., VO, T. P., and THAI, H. T. Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Composites Part B: Engineering, 76(3), 273–285 (2015)

    Article  Google Scholar 

  105. LI, L. and HU, Y. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. International Journal of Engineering Science, 97, 84–94 (2015)

    Article  MathSciNet  Google Scholar 

  106. ZHU, X. and LI, L. Twisting statics of functionally graded nanotubes using Eringens nonlocal integral model. Composite Structures, 178, 87–96 (2017)

    Article  Google Scholar 

  107. DELALE, F. and ERDOGAN, F. The crack problem for a nonhomogeneous plane. Journal of Applied Mechanics, 50(3), 609–614 (1983)

    Article  MATH  Google Scholar 

  108. ALSHORBAGY, A. E., ELTAHER, M., and MAHMOUD, F. Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35(1), 412–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  109. ZHAO, L., CHEN, W., and LYU, C. Symplectic elasticity for bi-directional functionally graded materials. Mechanics of Materials, 54, 32–42 (2012)

    Article  Google Scholar 

  110. SURESH, S. Graded materials for resistance to contact deformation and damage. Science, 292(5526), 2447–2451 (2001)

    Article  Google Scholar 

  111. SURESH, S., GIANNAKOPOULOS, A., and ALCALA, J. Spherical indentation of compositionally graded materials: theory and experiments. Acta Materialia, 45(4), 1307–1321 (1997)

    Article  Google Scholar 

  112. LI, L., LI, X., and HU, Y. Nonlinear bending of a two-dimensionally functionally graded beam. Composite Structures, 184, 1049–1061 (2018)

    Article  Google Scholar 

  113. LI, L. and HU, Y. Torsional statics of two-dimensionally functionally graded microtubes. Mechanics of Advanced Materials and Structures, 1–13 (2017) https://doi.org/10.1080/15376494.2017.1400617

    Google Scholar 

  114. ASKES, H. and AIFANTIS, E. C. Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. International Journal of Solids and Structures, 48(13), 1962–1990 (2011)

    Article  Google Scholar 

  115. JONES, R. M. Buckling of Bars, Plates, and Shells, Bull Ridge, Blacksburg (2006)

    Google Scholar 

  116. WU, T. Y. and LIU, G. R. A differential quadrature as a numerical method to solve differential equations. Computational Mechanics, 24(3), 197–205 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  117. WU, T. Y. and LIU, G. R. Application of generalized differential quadrature rule to sixth-order differential equations. Communications in Numerical Methods in Engineering, 16(11), 777–784 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  118. SUI, S., CHEN, L., LI, C., and LIU, X. Transverse vibration of axially moving functionally graded materials based on Timoshenko beam theory. Mathematical Problems in Engineering, 2015, 391452 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  119. SHU, C. and RICHARDS, B. E. Application of generalized differential quadrature to solve twodimensional incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 15(7), 791–798 (1992)

    Article  MATH  Google Scholar 

  120. QUAN, J. R. and CHANG, C. T. New insights in solving distributed system equations by the quadrature method II: numerical experiments. Computers and Chemical Engineering, 13(9), 1017–1024 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujin Hu.

Additional information

Citation: LI, X. B., LI, L., and HU, Y. J. Instability of functionally graded micro-beams via microstructure-dependent beam theory. Applied Mathematics and Mechanics (English Edition), 39(7), 923–952 (2018) https://doi.org/10.1007/s10483-018-2343-8

Project supported by the National Natural Science Foundation of China (Nos. 51375184 and 51605172) and the Fundamental Research Funds for the Central Universities (No. 2015MS014)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, L. & Hu, Y. Instability of functionally graded micro-beams via micro-structure-dependent beam theory. Appl. Math. Mech.-Engl. Ed. 39, 923–952 (2018). https://doi.org/10.1007/s10483-018-2343-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2343-8

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation