Skip to main content
Log in

Complete genome of Vibrio japonicus strain JCM 31412 T and assessment of the Nereis clade of the genus Vibrio

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Clade-based taxonomy has become a recognised means of classifying members of the family Vibrionaceae. A multilocus sequence analysis (MLSA) approach based on eight housekeeping genes can be used to infer phylogenetic relationships, which then groups species into monophyletic clades. Recent work on the Vibrionaceae clades added newly described species and updated existing relationships; the Nereis clade currently includes Vibrio nereis and Vibrio hepatarius. A publication characterising Vibrio japonicus as a novel species placed it within the Nereis clade, but this strain was not included in a recently published taxonomic update because a genome sequence was not available for phylogenetic assessment. To resolve this discrepancy and assess the taxonomic position of V. japonicus within the updated clades, we sequenced the complete genome of V. japonicus JCM 31412 T and conducted phylogenetic and genomic analyses of this clade. Vibrio japonicus remains within the Nereis clade and phylogenomic, average nucleotide identity (ANI), and average amino acid identity (AAI) analyses confirm this relationship. Additional genomic assessments on all Nereis clade members found gene clusters and inferred functionalities shared among the species. This work represents the first complete genome of a member of the Nereis clade and updates the clade-based taxonomy of the Vibrionaceae family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The complete genome sequence for V. japonicus JCM 31412 T is deposited in DDBJ/ENA/GenBank under the accession numbers CP102096-CP102098. Raw reads are deposited in the SRA under the accession numbers SRX16997812 and SRX16997813.

References

  • Asnicar F et al (2020) Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun 11:2500

    Article  CAS  Google Scholar 

  • Baker-Austin C et al (2018) Vibrio spp. infections. Nat Rev Dis Primers 4:1–19

    Article  Google Scholar 

  • Baumann P, Baumann L, Mandel M (1971) Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol 107:268–294

    Article  CAS  Google Scholar 

  • Baumann P, Baumann L, Bang SS, Woolkalis MJ (1980) Reevaluation of the taxonomy of Vibrio, Beneckea, and Photobacterium: Abolition of the genus Beneckea. Curr Microbiol 4:127–132

    Article  Google Scholar 

  • Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R (2015) Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10:e0128036

    Article  Google Scholar 

  • Blin K et al (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:W29–W35

    Article  CAS  Google Scholar 

  • Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  Google Scholar 

  • Chen X et al. (2020) Responses of free-living Vibrio community to seasonal environmental variation in a subtropical inland bay. Front Microbiol 11

  • Chimetto Tonon LA et al (2015) Diversity and ecological structure of vibrios in benthic and pelagic habitats along a latitudinal gradient in the Southwest Atlantic Ocean. PeerJ 3:e741

    Article  Google Scholar 

  • Doi H, Osawa I, Adachi H, Kawada M (2017) Vibrio japonicus sp. Nov., a novel member of the Nereis clade in the genus Vibrio isolated from the coast of Japan. PLoS One 12:e0172164

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  • Eren AM et al (2021) Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 6:3–6

    Article  CAS  Google Scholar 

  • Farmer JJ, Hickman-Brenner FW (2006) The genera Vibrio and Photobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes: A Handbook on the Biology of Bacteria, vol 6. Proteobacteria: Gamma Subclass. Springer, New York, New York, NY, pp 508–563

    Chapter  Google Scholar 

  • Gomez-Gil B, Roque A, Lacuesta B, Rotllant G (2010) Diversity of vibrios in the haemolymph of the spider crab Maja brachydactyla. J Appl Microbiol 109:918–926

    Article  CAS  Google Scholar 

  • Grigoriev A (1998) Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 26:2286–2290

    Article  CAS  Google Scholar 

  • Harwood CS, Bang SS, Baumann P, Nealson KH (1980) Photobacterium logei sp. nov., nom. rev.; Beneckea nereida sp. nov., nom. rev.; and Beneckea gazogenes sp. nov., nom. rev. Int J Syst Evol Microbiol 30:655–655

    Google Scholar 

  • Hirano T et al (2011) Heterodisaccharide 4-O-(N-acetyl-β-D-glucosaminyl)-D-glucosamine is an effective chemotactic attractant for Vibrio bacteria that produce chitin oligosaccharide deacetylase. Lett Appl Microbiol 53:161–166

    Article  CAS  Google Scholar 

  • Jiang C et al (2021) Vibrio clade 3.0: new Vibrionaceae evolutionary units using genome-based approach. Curr Microbiol 79:10

    Article  Google Scholar 

  • Julie D, Solen L, Antoine V, Jaufrey C, Annick D, Dominique H-H (2010) Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophyll a. Environ Microbiol 12:929–937

    Article  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    Article  CAS  Google Scholar 

  • Kurosaki M, Kunimoto M, Akiyama N, Itoi S, Sugita H (2021) Predominant gut microbiota in the early life stages of red seabream (Pagrus major) raised in indoor tanks. Int Aquat Res 13:219–226

    Google Scholar 

  • Lambert C, Nicolas JL, Cilia V, Corre S (1998) Vibrio pectenicida sp. Nov., a pathogen of scallop (Pecten maximus) larvae. Int J Syst Bacteriol 48(Pt 2):481–487

    Article  Google Scholar 

  • Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293-w296

    Article  CAS  Google Scholar 

  • Li B et al (2020) Vertical variation in Vibrio community composition in Sansha Yongle Blue Hole and its ability to degrade macromolecules. Mar Life Sci Technol 2:60–72

    Article  Google Scholar 

  • Ma Y, Wang Q, Xu W, Liu X, Gao X, Zhang Y (2017) Stationary phase-dependent accumulation of ectoine is an efficient adaptation strategy in Vibrio anguillarum against cold stress. Microbiol Res 205:8–18

    Article  CAS  Google Scholar 

  • Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM (2021) BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 38:4647–4654

    Article  CAS  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14:60

    Article  Google Scholar 

  • Minh BQ et al (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    Article  CAS  Google Scholar 

  • Mondal SK, Lijon B, Reza R, Ishika T (2016) Isolation and identification of Vibrio nereis and Vibrio harveyi in farm raised Penaeus monodon marine shrimp. Int J Biosci 8:55–61

    Article  CAS  Google Scholar 

  • Mongkol P et al (2018) Bacterial community composition and distribution in different segments of the gastrointestinal tract of wild-caught adult Penaeus monodon. Aquac Res 49:378–392

    Article  CAS  Google Scholar 

  • Nigro OD, Hou A, Vithanage G, Fujioka RS, Steward GF (2011) Temporal and spatial variability in culturable pathogenic Vibrio spp. in lake Pontchartrain, Louisiana, following Hurricanes Katrina and Rita. Appl Environ Microbiol 77:5384–5393

    Article  CAS  Google Scholar 

  • Oberbeckmann S, Fuchs BM, Meiners M, Wichels A, Wiltshire KH, Gerdts G (2012) Seasonal dynamics and modeling of a Vibrio community in coastal waters of the North Sea. Microb Ecol 63:543–551

    Article  Google Scholar 

  • Oliver JD, Pruzzo C, Vezzulli L, Kaper JB (2012) Vibrio species. In: Food Microbiol, pp 401–439

  • Om AD, Yusoff NHN, Iehata S, Chu KB, Jamari Z (2019) The potential use of yam tuber with probiotic for gonad development of tiger grouper. AACL Bioflux 12:1431–1441

    Google Scholar 

  • Ongagna-Yhombi SY, Boyd EF (2013) Biosynthesis of the osmoprotectant ectoine, but not glycine betaine, is critical for survival of osmotically stressed Vibrio parahaemolyticus cells. Appl Environ Microbiol 79:5038–5049

    Article  CAS  Google Scholar 

  • Pasquale V, Guida M, Cennamo P, Mastascusa V, Greco M, Sandulli R (2011) Cultivable heterotrophic bacteria associated to Corallium rubrum. Biol Mar Mediterr 18:274–275

    Google Scholar 

  • Pflughoeft KJ, Kierek K, Watnick PI (2003) Role of ectoine in Vibrio cholerae osmoadaptation. Appl Environ Microbiol 69:5919–5927

    Article  CAS  Google Scholar 

  • Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK (2016) Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal Methods 8:12–24

    Article  Google Scholar 

  • Pruzzo C, Huq A, Colwell RR, Donelli G (2005) Pathogenic Vibrio species in the marine and estuarine environment. In: Belkin S, Colwell RR (eds) Oceans and Health: Pathogens in the Marine Environment. Springer, US, Boston, MA, pp 217–252

    Chapter  Google Scholar 

  • Rahman S, Khan SN, Naser MN, Karim MM (2010) Isolation of Vibrio spp. from Penaeid shrimp hatcheries and coastal waters of Cox‟s Bazar. Bangladesh Asian J Exp Biol Sci 1:288–293

    Google Scholar 

  • Ramirez M et al (2022) The probiotics Vibrio diabolicus (Ili), Vibrio hepatarius (P62), and Bacillus cereus sensu stricto (P64) colonize internal and external surfaces of Penaeus vannamei shrimp larvae and protect it against Vibrio parahaemolyticus. Aquaculture 549:737826

    Article  CAS  Google Scholar 

  • Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 4:e1900v1901

    Google Scholar 

  • Sawabe T, Kita-Tsukamoto K, Thompson FL (2007) Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189:7932–7936

    Article  CAS  Google Scholar 

  • Sawabe T et al (2013) Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol 4:414–414

    Article  Google Scholar 

  • Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  Google Scholar 

  • Séré MG, Tortosa P, Chabanet P, Turquet J, Quod JP, Schleyer MH (2013) Bacterial communities associated with Porites white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs. PLoS ONE 8:e83746

    Article  Google Scholar 

  • Shaffer M et al (2020) DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res 48:8883–8900

    Article  CAS  Google Scholar 

  • Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104

    Article  CAS  Google Scholar 

  • Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539

    Article  CAS  Google Scholar 

  • Taboada B, Estrada K, Ciria R, Merino E (2018) Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34:4118–4120

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027

    Article  CAS  Google Scholar 

  • Tatusova T et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  Google Scholar 

  • Thompson FL, Thompson CC, Hoste B, Vandemeulebroecke K, Gullian M, Swings J (2003) Vibrio fortis sp. nov. and Vibrio hepatarius sp. nov., isolated from aquatic animals and the marine environment. Int J Syst Evol Microbiol 53:1495–1501

    Article  CAS  Google Scholar 

  • Thompson FL, Iida T, Swings J (2004) Biodiversity of Vibrios. Microbiol Mol Biol Rev 68:403

    Article  CAS  Google Scholar 

  • Ushijima B, Häse CC (2018) Influence of chemotaxis and swimming patterns on the virulence of the coral pathogen Vibrio coralliilyticus. J Bacteriol 200:e00791-e717

    Article  CAS  Google Scholar 

  • Vezzulli L et al (2016) Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci U S A 113:E5062-5071

    Article  CAS  Google Scholar 

  • Wei B et al (2021) An atlas of bacterial secondary metabolite biosynthesis gene clusters. Environ Microbiol 23:6981–6992

    Article  CAS  Google Scholar 

  • Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595

    Article  Google Scholar 

  • Zhang X, Lin H, Wang X, Austin B (2018) Significance of Vibrio species in the marine organic carbon cycle—a review. Sci China Earth Sci 61:1357–1368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Nancy Shough (Southern Oregon University, SOU) for technical support, and the editor and reviewers for their efforts to improve the quality and presentation of this work. We gratefully acknowledge the computing resources provided on the High-Performance Computing Cluster operated by Research Technology Services at the George Washington University.

Funding

This work was supported by startup funds from the GWU to J.H.S., from SOU to P.V., and from UNCW to B.U. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

B.U., J.H.S., and P.V. designed the experiments; M.D.S., S.A.E, R.M.L., J.H.S., and P.V. conducted the experiments; M.D.S., S.M.O., J.H.S., and P.V. prepared the figures, B.U., P.V., and J.H.S. contributed methodology and validation; M.D.S., P.V., and J.H.S. wrote the manuscript and all authors analysed the data and reviewed the manuscript.

Corresponding authors

Correspondence to Patrick Videau or Jimmy H. Saw.

Ethics declarations

Conflict of interests

The authors declare that there are no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlafstein, M.D., Emsley, S.A., Loughran, R.M. et al. Complete genome of Vibrio japonicus strain JCM 31412 T and assessment of the Nereis clade of the genus Vibrio. Antonie van Leeuwenhoek 116, 129–141 (2023). https://doi.org/10.1007/s10482-022-01784-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-022-01784-y

Keywords

Navigation