Skip to main content
Log in

Variations on a theme: evolution of the phage-shock-protein system in Actinobacteria

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The phage shock protein (Psp) stress-response system protects bacteria from envelope stress through a cascade of interactions with other proteins and membrane lipids to stabilize the cell membrane. A key component of this multi-gene system is PspA, an effector protein that is found in diverse bacterial phyla, archaea, cyanobacteria, and chloroplasts. Other members of the Psp system include the cognate partners of PspA that are part of known operons: pspF||pspABC in Proteobacteria, liaIHGFSR in Firmicutes, and clgRpspAMN in Actinobacteria. Despite the functional significance of the Psp system, the conservation of PspA and other Psp functions, as well as the various genomic contexts of PspA, remain poorly characterized in Actinobacteria. Here we utilize a computational evolutionary approach to systematically identify the variations of the Psp system in ~450 completed actinobacterial genomes. We first determined the homologs of PspA and its cognate partners (as reported in Escherichia coli, Bacillus subtilis, and Mycobacterium tuberculosis) across Actinobacteria. This survey revealed that PspA and most of its functional partners are prevalent in Actinobacteria. We then found that PspA occurs in four predominant genomic contexts within Actinobacteria, the primary context being the clgRpspAM system previously identified in Mycobacteria. We also constructed a phylogenetic tree of PspA homologs (including paralogs) to trace the conservation and evolution of PspA across Actinobacteria. The genomic context revealed that PspA shows changes in its gene-neighborhood. The presence of multiple PspA contexts or of other known Psp members in genomic neighborhoods that do not carry pspA suggests yet undiscovered functional implications in envelope stress response mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29:231–262

    Article  CAS  PubMed  Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42

    Article  CAS  PubMed  Google Scholar 

  • Brissette JL, Russel M, Weiner L, Model P (1990) Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci USA 87:862–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin AJ (2005) The phage-shock-protein response. Mol Microbiol 57:621–628

    Article  CAS  PubMed  Google Scholar 

  • Datta P, Ravi J, Guerrini V, Chauhan R, Neiditch MB, Shell SS, Fortune SM, Hancioglu B, Igoshin OA, Gennaro ML (2015) The Psp system of Mycobacterium tuberculosis integrates envelope stress-sensing and envelope-preserving functions. Mol Microbiol 97:408–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Kim J, Darwin AJ (2015) Activity of a bacterial cell envelope stress response is controlled by the interaction of a protein binding domain with different partners. J Biol Chem 290:11417–11430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Kim J, Darwin AJ (2016) The phage shock protein response. Annu Rev Microbiol. https://doi.org/10.1146/annurev-micro-102215-095359

    PubMed  Google Scholar 

  • Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:2795–2806

    Article  CAS  PubMed  Google Scholar 

  • Huvet M, Toni T, Sheng X, Thorne T, Jovanovic G, Engl C, Buck M, Pinney JW, Stumpf MP (2011) The evolution of the phage shock protein response system: interplay between protein function, genomic organization, and system function. Mol Biol Evol 28:1141–1155

    Article  CAS  PubMed  Google Scholar 

  • Huynen M, Snel B, Lathe W, Bork P (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res 10:1204–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MP, Buck M (2010) Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 34:797–827

    Article  CAS  PubMed  Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Kleine B, Chattopadhyay A, Polen T, Pinto D, Mascher T, Bott M, Brocker M, Freudl R (2017) The three-component system EsrISR regulates a cell envelope stress response in Corynebacterium glutamicum. Mol Microbiol 106(5):719–741

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korbel JO, Jensen LJ, von Mering C, Bork P (2004) Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nat Biotechnol 22:911–917

    Article  CAS  PubMed  Google Scholar 

  • Lassmann T, Frings O, Sonnhammer EL (2009) Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res 37:858–865

    Article  CAS  PubMed  Google Scholar 

  • Manganelli R, Gennaro ML (2016) Protecting from envelope stress: variations on the phage-shock-protein theme. Trends Microbiol. https://doi.org/10.1016/j.tim.2016.11.010

    PubMed Central  Google Scholar 

  • Mascher T, Zimmer SL, Smith TA, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48:2888–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry J, Finn R (2007) Pfam: a domain-centric method for analyzing proteins and proteomes. Methods Mol Biol 396:43–58

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H (2017) Predicting secretory proteins with SignalP. Methods Mol Biol 1611:59–73

    Article  PubMed  Google Scholar 

  • Overmars L, Kerkhoven R, Siezen RJ, Francke C (2013) MGcV: the microbial genomic context viewer for comparative genome analysis. BMC Genom 14:209

    Article  CAS  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogozin IB, Makarova KS, Wolf YI, Koonin EV (2004) Computational approaches for the analysis of gene neighbourhoods in prokaryotic genomes. Brief Bioinform 5:131–149

    Article  CAS  PubMed  Google Scholar 

  • Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28:405–420

    Article  CAS  PubMed  Google Scholar 

  • Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26:320–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vothknecht UC, Otters S, Hennig R, Schneider D (2012) Vipp1: a very important protein in plastids?! J Exp Bot 63:1699–1712

    Article  CAS  PubMed  Google Scholar 

  • Vrancken K, van Mellaert L, Anne J (2008) Characterization of the Streptomyces lividans PspA response. J Bacteriol 190:3475–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJ, Yoo HS, Zhang C, Zhang Y, Sobral BW (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42:D581–D591

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Institutes of Health (R01AI104615) to MLG. We thank members of the Gennaro and Aravind laboratories for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Laura Gennaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, J., Anantharaman, V., Aravind, L. et al. Variations on a theme: evolution of the phage-shock-protein system in Actinobacteria. Antonie van Leeuwenhoek 111, 753–760 (2018). https://doi.org/10.1007/s10482-018-1053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1053-5

Keywords

Navigation